Solutions to problems in Ch.10

Yipu Li

June 2025

1 Problem 10.1

Claim 1 (Claim 10.1.1). Let $\pi : \bar{\mathcal{M}} \to \mathcal{M}$ be elementary and $\pi(\bar{U}) = U$. If a putative iteration of \mathcal{M} of length $\alpha + 1$ is an iteration, then a putative iteration of $\bar{\mathcal{M}}$ of length $\alpha + 1$ is an iteration.

Proof of claim: We recursively define, for $\xi \leq \alpha + 1$, $\pi_{\xi} : \overline{\mathcal{M}}_{\xi} \to \mathcal{M}_{\xi}$ by setting $\pi_{\xi+1}([f]_{\overline{U}_{\xi}}) = [\pi_{\xi}(f)]_{U_{\xi}}$, π_{λ} where λ is a limit to be the direct limit map given by $\pi_{\lambda}(\bar{i}_{\xi,\lambda}(f)) = i_{\xi,\lambda} \cdot \pi_{\xi}(f)$.

Then the final map $\pi_{\alpha+1}: \overline{\mathcal{M}}_{\alpha+1} \to \mathcal{M}_{\alpha+1}$ witness the wellfoundedness of $\overline{\mathcal{M}}_{\alpha+1}$. \square

Let \mathcal{T} be a putative iteration of \mathcal{M} of length $\alpha+1$. We pick θ large enough, X a ctm, and $\pi: X \to V_{\theta}$ that is elementary w.r.p the language with predicate $\in, \mathcal{T}, \mathcal{M}$. Let $\pi(\bar{\mathcal{T}}) = \mathcal{T}$, $\pi(\bar{\mathcal{M}}) = \mathcal{M}$. Then

$$X \models \bar{\mathcal{T}}$$
 is a putative iteration of $\bar{\mathcal{M}}$

This is an absolute statement and hence $\bar{\mathcal{T}}$ is a putative iteration of $\bar{\mathcal{M}}$, as $\bar{\mathcal{T}} \in X$, its length is less than ω_1 . By Claim 10.1.1 and the assumption in the problem we have $\bar{\mathcal{T}}$ is an iteration of $\bar{\mathcal{M}}$, i.e. $\bar{\mathcal{M}}_{\alpha+1}$ is well-founded. Hence $X \models \bar{\mathcal{T}}$ is an iteration of $\bar{\mathcal{M}}$. By elementariness and passing to V_{θ} , \mathcal{T} is an iteration of \mathcal{M} . This concludes the proof that \mathcal{M} is iterable.

cf. Lemma 2.4, Lemma 2.5 in John Steel's note on Itreated Ultrapowers.

2 Problem 10.2

(a) We show by an induction on $\alpha \in Ord$ that

$$M_{\alpha} = \{ \pi_{0,\alpha}(f)(a) \mid a \in \{ \kappa_{\beta} \mid \beta < \alpha \}^{<\omega}, f : [\kappa]^{|a|} \to M_0 \}$$

The base case $\alpha = 0$ is trivial.

Induction step for successor $\alpha + 1$:

$$M_{\alpha+1} = Ult(M_{\alpha}, U_{\alpha})$$

$$= \{\pi_{U_{\alpha}}^{M_{\alpha}}(g)(\kappa_{\alpha}) \mid g \in M_{\alpha}^{\kappa_{\alpha}}\}$$

$$= \text{by IH}, \{\pi_{\alpha,\alpha+1}(\pi_{0,\alpha}(f)(a))(\kappa_{\alpha}) \mid a \in \{\kappa_{\beta} \mid \beta < \alpha\}^{<\omega}, f : [\kappa]^{|a|} \to M_{0}^{\kappa}\}$$

$$= \{\pi_{0,\alpha+1}(f')(a \cup \{\kappa_{\alpha}\}) \mid a \in \{\kappa_{\beta} \mid \beta < \alpha\}^{<\omega}, f' : [\kappa]^{|a|+1} \to M_{0}\}$$

The final equation holds as $\pi_{\alpha,\alpha+1}(a) = (a)$ for $a \subseteq \{\kappa_\beta \mid \beta < \alpha\}$. This equation shows the \subseteq direction of the desired result. The other side is obvious.

Induction step for limit λ :

$$x \in M_{\lambda} \iff \exists \alpha < \lambda, \exists y \in M_{\alpha}, x = \pi_{\alpha,\lambda}(y)$$

$$\iff \exists \alpha < \lambda, \exists a \in \{\kappa_{\beta} \mid \beta < \alpha\}^{<\omega}, \exists f : [\kappa]^{|a|} \to M_{0}^{\kappa}, (x = \pi_{\alpha,\lambda}(\pi_{0,\alpha}(f)(a)))$$

$$\iff \exists \alpha < \lambda, \exists a \in \{\kappa_{\beta} \mid \beta < \alpha\}^{<\omega}, \exists f : [\kappa]^{|a|} \to M_{0}^{\kappa}, (x = \pi_{0,\lambda}(f)(a))$$

This concludes the proof.

This exercise shows that $M_{\alpha} = h_M(ran(\pi_{0,\alpha}), \{\kappa_{\beta} \mid \beta < \alpha\}).$

(b) As κ_{α} , $\alpha \in Ord$ satisfy $\kappa_{\alpha} < \kappa_{\beta}$ if $\alpha < \beta$, it is unbounded in Ord.

For arbitrary sequence $(\kappa_{\alpha_{\mu}}, \mu < \lambda)$ where λ is a limit, we show that $\bigcup_{\mu < \lambda} \kappa_{\alpha_{\mu}} = \kappa_{\bigcup_{\mu < \lambda} \alpha_{\mu}}$. Let $\theta = \bigcup_{\mu < \lambda} \alpha_{\mu}$.

 \leq is immediate. For the other side, if $\gamma < \kappa_{\theta}$, then $\gamma = \pi_{\alpha_{\mu},\theta}(\gamma')$ for some $\mu < \lambda$ and by the construction of direct limit. $\gamma' < \kappa_{\alpha_{\mu}}$ by elementarily. It follows that $\gamma' = \gamma$ and hence $\gamma < \kappa_{\alpha_{\mu}}$.

(c) For limit ordinal λ , for arbitrary $X \in \kappa_{\lambda} \cap M_{\lambda}$, we have that there is some $\alpha < \lambda$ s.t. $\pi_{\alpha,\lambda}(Y) = X$ and $Y \in U_{\alpha}$. We show that for all β s.t. $\alpha \leq \beta < \lambda$, we have $\kappa_{\beta} \in X$. Then $Z := \pi_{\alpha,\beta}(Y) \in U_{\beta}$. Hence $\kappa_{\beta} \in \pi_{\beta,\beta+1}(Z) \subseteq \pi(\beta,\gamma)(Z) = X$ by normality of U_{β} . Hence $\kappa_{\beta} \in X$.

The statement is false for successor ordinals, as in this case the statement we are supposed to prove reduces to $\mathcal{M}_{\alpha+1} \models U_{\alpha+1}$ is principal.

(d) The statement contains an error, μ should be λ .

To see the statement makes sense, it follows from the proof of (b) that $\kappa_{\lambda} = \lim_{\beta < \lambda} \kappa_{\beta}$. We have $\kappa_{\beta} \leq |\beta| \cdot 2^{\kappa} < \lambda$ by a function counting argument, and hence $\kappa_{\lambda} = \lim_{\beta < \lambda} \kappa_{\beta} \leq \lambda$. This means $\kappa_{\lambda} = \lambda$.

The fact that $U_{\lambda} \subseteq F_{\lambda} \cap \mathcal{M}_{\lambda}$ follows from (c) and (b). The otherside follows as U_{λ} is an ultrafilter in $\mathcal{M}_{\lambda} \square$

3 Problem 10.3

(a) $L[U] = L[\bar{U}]$ is standard exercise. To verify $L[U] \models \bar{U}$ is a measure on κ , $\kappa \in \bar{U}$ as $\kappa \in L[U]$ and $\kappa \in U$.

If $X_1, X_2 \in \overline{U} = L[U] \cap U$, then $X_1 \cap X_2 \in L[U] \cap U$. Upward closure and the property for complement is similarly verified.

If $(X_{\alpha}, \alpha < \mu) \in L[U]$ for some $\mu < \kappa$ and $X_{\alpha} \in L[U] \cap U$, then $\bigcap_{\alpha < \mu} X_{\alpha} \in U$ and $\bigcap_{\alpha < \mu} X_{\alpha} \in L[U]$, hence $\bigcap_{\alpha < \mu} \in \bar{U}$.

(b) Same as 10.2 (d), μ should be λ . By elementarity $\mathcal{M}_{\lambda} \models V = L[U_{\lambda}]$. Hence $\mathcal{M}_{\lambda} = L[U_{\lambda}]$. As by 10.2 (d) $U_{\lambda} = F_{\lambda}^{L[U]} \cap \mathcal{M}_{\lambda} = F_{\lambda} \cap \mathcal{M}_{\lambda}$, $\mathcal{M}_{\lambda} = L[F_{\lambda}]$.

4 Problem 10.4

(a) Let $\lambda > 2^{\kappa}$ be regular, we show that there is δ s.t. $\mathcal{M}_{\lambda} = J_{\beta}[F_{\lambda}]$. First $\mathcal{M}_{\lambda} \models V = L[\pi_{0,\lambda}(U)]$, it must be of the form $J_{\beta}[\pi_{0,\lambda}(U)]$ for some limit β .

Next, notice that problem 10.2 also works for iterable set model \mathcal{M} . Hence we have $\pi_{0,\lambda}(U) = F_{\lambda} \cap \mathcal{M}_{\lambda}$ and hence $\mathcal{M}_{\lambda} = J_{\beta}[F_{\lambda}]$.

Hence two L^{μ} mouse can be coiterated as we can take $\lambda > max\{2^{\kappa}, 2^{\lambda}\}$ where κ, λ are the respective largest cardinal in \mathcal{M}, \mathcal{N} .

(b) Like in the proof of Claim 10.33, we construct the putative iteration of length $\gamma + 1$, $(\mathcal{N}_{\alpha}, \theta_{\alpha,\beta} \mid \alpha \leq \beta \leq \gamma + 1)$ of $\mathcal{N}_0 = J_{\bar{\alpha}}[\bar{U}]$ and construct the family of elementary embeddings $\sigma_{\alpha}, \alpha \leq \gamma + 1$ into the iteration $(\mathcal{M}_{\alpha}, \pi_{\alpha,\beta} \mid \alpha \leq \beta \leq \gamma + 1)$.

For successor step, we set $\sigma_{\alpha+1}(\theta_{\alpha,\alpha+1}(f)(\lambda_{\alpha})) = \pi_{\alpha,\alpha+1}(\sigma_{\alpha}(f))(\kappa_{\alpha})$. By the fact that \mathcal{N}_0 is a model of ZFC^- , this map can be elementary instead of just Σ_0 elementary. The limit case can be defined by commutativity of the diagram.

5 Problem 10.5

Let U be a normal measure on κ . We work in this inner model.

First we show the case for $\lambda < \kappa$: It suffice to show that for each λ and $X \in \mathcal{P}(\lambda)$,

$$|\{Y \in \mathcal{P}(\lambda) \mid Y \subseteq X \land Y <_{L[U]} X\}| \le \lambda$$

Then we would have $o(\langle L[U] |_{\mathcal{P}(\lambda)^2}) \leq \lambda^+$, this validates the conclusion.

Take $J_{\alpha}[U]$ large enough s.t. $\kappa, \lambda \in J_{\alpha}[U]$.

Consider the Skolem closure of $\lambda \cup \{\lambda\}$ w.r.t. the language with constant c_X for X, and collapse it to form $J_{\beta}[U']$ by condensation. Then $\pi: J_{\beta}[U'] \to J_{\alpha}[U]$ is elementary, $U' = \pi^{-1}[U]$, $|J_{\beta}[U']| = \lambda$, $\pi|_{\lambda+1} = id$ and $X = \pi(X')$ for some $X' \in J_{\beta}[U']$, we notice that actually $X = \pi(X)$ and thus $X \in J_{\beta}[U']$ as $\pi|_{\lambda+1} = id$.

Now we want to show that, assuming for $x,y\subseteq \lambda,\ x<_{L[U']}y$ iff $x<_{L[U]}y$, it holds that $\{Y\in \mathcal{P}(\lambda)\mid Y\subseteq X\wedge Y<_{L[U]}X\}\subseteq J_{\beta}[U']$, which finishes the proof. If $Y<_{L[U]}X$, there is γ s.t. $J_{\alpha}[U]\models rank_{<_{L[U]}}(Y)=\gamma$, then $J_{\beta}[U']\models \exists Y'\subseteq X, rank_{<_{L[U']}}(Y')=\gamma$. By elementarity and the fact that $\pi|_{\lambda+1}=id$, such Y' is Y and hence $Y\in J_{\beta}[U']$.

Finally, we verify that for $x, y \subseteq \lambda$, $x <_{L[U']} y$ iff $x <_{L[U]} y$. By theorem 10.3 and Problem 10.4(b), $\mathcal{N}_0 = J_{\beta}[U']$ and $\mathcal{M}_0 = J_{\alpha}[U]$ are L^{μ} mice and hence by 10.4(a) they can be co-iterated, i.e. there is γ, γ' s.t. $\mathcal{M}_{\lambda} = J_{\beta}[F_{\lambda}], \mathcal{N}_{\lambda} = J_{\beta'}[F_{\lambda}]$. And hence $\mathcal{M}_0 \models x <_{L[U']} y$ iff $J_{\beta'}[F_{\lambda}], J_{\beta}[F_{\lambda}] \models x <_{L[F_{\lambda}]} y$ iff $\mathcal{N}_0 \models x <_{L[U]} y$ by elementariness and the fact that elements under λ are fixed under iteration.

Remark: In general, when we collapse the structure $(N, N \cap U)$, we can't make sure that the collapsed structure is $(N', N' \cap U)$, i.e. not necessarily elementary to (L[U], U) for the predicate. Hence the condensation does not apply and though N' would be some $J_{\beta}[U']$, we have no idea about whether $U' = U \cap N'$. But in the case when U is a normal measure on κ , coiteration argument fits the gap.

The case when $\lambda \geq \kappa$ is similar to Godel's argument that V = L implies GCH, for $x \subseteq \lambda$, the fact that $\lambda > \kappa$ means the collapsed structure of $(N = 1)^{-1}$

 $h_{L[U]}(\lambda \cup \{x, U\}), U \cap N)$ to be elementary at the predicate as the collapsing map would be constant on $\kappa < \lambda$. Hence the condensation applies, this is not true for $\lambda < \kappa$.

6 Problem 10.6

The proof of Claim 10.22 is standard.

For 10.21 (d), we prove a more general theorem

Claim 2 (Claim 10.6.1). If $M_0, M_1 \models ZFC^-$ and $j: M_0 \to M_1$ is Σ_1 elementary and cofinal in M_1 , then actually j is elementary.

Proof of claim cf. Prop 5.1 in Kanamori: We show by an induction on the Levy hierarchy of formulas. Suppose $M_0 \prec_{\Sigma_n} M_1$, we show $M_0 \prec_{\Sigma_{n+1}} M_1$. It suffice to show that for Π_1 formula $\psi(x,\vec{y})$ and $\vec{a} \in M_0$, if $M_1 \models \exists x \psi(x,j(\vec{a}))$ then there is $b \in M_0$ s.t. $M_0 \models \psi(b,\vec{a})$.

By cofinalness, we find $c \in M_0$ s.t. $M_1 \models \exists x \in j(c)\psi(x,j(\vec{a}))$, by replacement (this is where $M_1 \models ZFC^-$ is used), $\exists x \in j(c)\psi(x,j(\vec{a}))$ is equivalent to a Π_n formula an hence $M_0 \models \exists x \in c\psi(x,\vec{a})$. We are done. \square

I don't really understand why in the text book, the language in (c) and (d) is different.

7 Problem 10.7

We say a real x codes a structure (M, \in, A) iff for $o(x) : n \mapsto 2n + 1$ and $e(x) : n \mapsto 2n \ \pi(\omega, E_{o(x)}, A_{e(x)}) \cong (M, \in, A)$ where $E_{o(x)}$ denotes the standard coding of o(x) as a well-founded relation and $n \in A_{e(x)} \iff e(x)(n) \neq 0$. π is the transitive collapse.

Claim 3 (Claim 10.7.1). The following relation is Δ_2^1 :

 $(x,y) \in A \iff x \text{ codes a premouse and its iteration up to } ||y||.$

In the sense that for all $n, (x)_n : m \mapsto x(\Gamma(n,m))$ codes a premouse and

$$n_1 E_y n_2 \iff (x)_{n_2} \ codes \ an \ ultrapower \ of \ (x)_{n_1}$$

Proof. First we show that x codes a premouse is Π_1^1 . x codes a premouse iff $o(x) \in \mathsf{WF}$ and $(\omega, E_{o(x)}) \models ZFC^- + V = L + \mathsf{there}$ is a largest cardinal and say n_κ is the largest cardinal in $(\omega, E_{o(x)}) (\omega, E_{o(x)}) \models U_{e(x)}$ is a non-trivial normal $< \kappa$ complete ultrafilter on κ .

 $(\omega, E_{o(x)}) \models ZFC^- + V = L + \text{there is a largest cardinal is arithmetical since the relation } (\omega, E_{o(x)}) \models \varphi(n_1 \dots n_m) \text{ is arithmetical.}$ To analyze $(\omega, E_{o(x)}, U_{e(x)}) \models U_{e(x)}$ is a non-trivial normal $< \kappa$ complete ultrafilter on κ , for instance $(\omega, E_{o(x)}, U_{e(x)}) \models U_{e(x)}$ is $< \kappa$ complete. iff

$$\forall n(\pi_x(n) \in \pi_x(n_\kappa) \to \forall X \in [\omega]^\omega (\forall m \in X (m \in U_{e(x)} \land \pi_x(m) \in \pi_x(n)) \to \exists l \in U_{e(x)} (\bigcap \pi_x[X] = \pi_x(l)))$$

Where π_x is the Mostowski collapse. This is a Π_1^1 property, for the Mostowski collapse part see for instance Jech Proof of Lemma 25.25.

Next consider the following relation:

 $(x,y) \in Ult \iff y,x$ both code premice and y codes the ultrapower of x

First we notice the ultrapower equivalence relation for x is given by, for n_1, n_2 that are functions with domain ω in $(\omega, E_{o(x)})$ collapsed,

$$n_1 \equiv n_2 \iff \exists m (m \in U_{e(x)} \land \forall l (\pi(l) \in \pi(m) \to \pi(n_1)(\pi(l)) \in \pi(n_2)(\pi(l))))$$
 (*

We have y codes the ultrapower of x iff there is $\equiv_x \subseteq \omega^2$, $f \in \omega^{\omega}$ s.t. \equiv_x is an equivalent relation satisfying *, f respects \equiv_x and is bijective $\omega \to \{n \in \omega \mid \pi_x(n) \text{ is a function with domain } \omega\}/\equiv_x$,

$$n_1 E_{e(y)} n_2 \iff \exists m(m \in U_{e(x)} \land \forall l(\pi(l) \in \pi(m) \rightarrow \pi(n_1)(\pi(l)) \in \pi(n_2)(\pi(l))))$$

and

$$n_1 \in U_{e(y)} \iff m(m \in U_{e(x)} \land \forall l(\pi(l) \in \pi(m) \to l \in U_{e(x)}))$$

And hence Ult is a Σ_1^1 relation.

Hence, let $(x)_n : m \mapsto x(\Gamma(n,m)), (x,y) \in A \iff \forall n_1, n_2(n_2 \text{ is the } E_y \text{ successor of } n_1 \to ((x)_{n_1}, (x)_{n_2}) \in Ult)$, and thus is Δ_2^1 . Moreover, the shows that the section of A along y is also Δ_2^1 . \square

Thus x codes a z-mouse is a $\Pi_2^1(z)$ property.

8 Problem 10.8

Let $x^{\sharp} = (J_{\alpha}[x], U)$, then $\omega^{\omega} \cap x^{\sharp} = \omega^{\omega} \cap L[x]$ by a condensation argument as in Problem 10.10. Hence by Corollary 7.21 the conclusion follows.

9 Problem 10.9

Claim 4 (Claim 10.9.1). For $J_{\alpha}[x], J_{\beta}[x]$, if $j: J_{\alpha}[x] \to J_{\beta}[x]$ is an elementary embedding which has critical point $\gamma < |\alpha|$, then x^{\sharp} exists.

Proof of claim: Let U be the ultrafilter defined on γ with j. Since $\gamma < |\alpha|$, $J_{\alpha}[x]$ and L[x] agrees on $\mathcal{P}(\gamma)$ and hence L[x] also thinks U is a γ complete ultrafilter on γ . It suffice to show that Ult(L[x], U) is well-founded. Thus Ult(L[x], U) = L[x] and the ultrapower map is an non trivial elementary embedding from L[x] to itself.

Suppose for contradiction that ... $[f_1] \in [f_0]$, let $J_{\theta}[x]$ be such that $f_n \in J_{\theta}[x]$. Take:

$$\pi: J_{\delta}[x] \cong h_{J_{\theta}[x]}(\gamma \cup \{f_n \mid n \in \omega\}) \prec J_{\theta}[x]$$

Then we assume $\pi(g_n) = f_n$ and $\delta < \alpha$ since $|J_{\delta}[x]| = \gamma < \alpha$. Thus $g_n \in J_{\delta}[x] \subseteq J_{\alpha}[x]$, since π is elementary and is constant on γ , we have that $\{\xi \mid A_{\delta}(x) \subseteq A_{\delta}(x) \}$

 $g_n(\xi) \in g_m(\xi)\} \in U$ iff $\{\xi \mid f_n(\xi) \in f_m(\xi)\} \in U$. This means that $[g_0], [g_1], \ldots$ would be an ill-founded chain in $Ult(J_{\alpha}[x], U)$, but this model embeds into $J_{\beta}[x]$, a contradiction. \square

Claim 5 (Claim 10.9.2). Let κ be ω_1 -Erdos, then $\kappa \to [\omega_1]_{2^{\omega}}^{<\omega}$.

See for instance Jech Lemma 17.29□

(i) Now for the ω_1 Erdos cardinal κ , we consider the model $J_{\kappa}[x]$. Define the map $F : [\omega]^{<\omega} \to 2^{\omega}$ by the following, for $n, m \in \omega, \lambda_1 < \cdots < \lambda_n < \kappa$:

$$F(\lambda_1 \dots \lambda_n) = \{ n \mid J_{\kappa}[x] \models \varphi_n(\lambda_1 \dots \lambda_n) \}$$

Then by the Claim 10.9.2 we obtain there is $X \subseteq \kappa$ of size ω_1 s.t. X is a set of indiscernibles for $J_{\kappa}[x]$, i.e. for any $\lambda_{i_1} < \cdots < \lambda_{i_n} \in X$ and $\lambda_{j_1} < \cdots < \lambda_{j_n} \in X$ and any φ ,

$$J_{\kappa}[x] \models \varphi(\lambda_{i_1} \dots \lambda_{i_n}) \iff J_{\kappa}[x] \models \varphi(\lambda_{j_1} \dots \lambda_{j_n})$$

We consider the model

$$\pi: J_{\alpha}[x] \cong h_{J_{\kappa}[x]}(X) \prec J_{\kappa}[x]$$

We write $\pi(\xi_{\alpha}) = \lambda_{\alpha}$ for . Then in $J_{\alpha}[X]$, every $a \in J_{\alpha}[x]$ is of the form $h_{J_{\alpha}[x]}(n,\xi_{\alpha_1}\dots\xi_{\alpha_n})$ for some n and ξ_{α_i} and $\{\xi_{\alpha} \mid \alpha < \omega_1\}$ is indiscernibles for $J_{\alpha}[x]$. Then for arbitrary $e: \omega_1 \to \omega_1$ that is order preserving, it induces an elementary embedding $J_{\alpha}[x] \to J_{\alpha}[x]$ by the following map:

$$\pi_e: h_{J_{\alpha}[x]}(n, \xi_{\alpha_1} \dots \xi_{\alpha_n}) \mapsto h_{J_{\alpha}[x]}(n, \xi_{e(\alpha_1)} \dots \xi_{e(\alpha_n)})$$

Moreover, the first ordinal moved will be less than $|\alpha|$ since it is countable, while $\alpha \geq \omega_1$ as $|h_{J_{\kappa}[x]}(X)| \geq \omega_1$. By Claim 10.9.1 x^{\sharp} exists. \square

10 Problem 10.10

(a) We first show that for all ordinal $\delta \in J_{\alpha}[x]$, we have $\pi_U^{J_{\alpha}[x]}(\delta) = \pi_U^{L[x]}(\delta)$. It suffice to show that $\delta^{\kappa} \cap J_{\alpha}[x] = \delta^{\kappa} \cap L[x]$.

 \subseteq is obvious. For the other side, if $f \in \delta^{\kappa} \cap L[X]$, we take γ large enough s.t. $f \in J_{\gamma}[x]$ and:

$$\pi: (J_{\beta}[x], x) \cong (Hull_{L[x]}(TC(f)), x) \prec_{\Sigma_1} (L[x], x)$$

where $|J_{\beta}[x]| \leq \max\{\delta, \kappa\} \leq \kappa^{+L[x]} = \alpha$. Hence $\beta \leq \alpha$ and thus $f \in J_{\alpha}[x]$.

Note: Here the condensation always applies as $x \subseteq \omega$, hence the structures are always elementary w.r.t. the predicate. Now given $\pi_U^{J_\alpha[x]}(\delta) = \pi_U^{L[x]}(\delta)$ for all ordinal $\delta \in J_\alpha[x]$, we show that

Now given $\pi_U^{J_{\alpha}[x]}(\delta) = \pi_U^{L[x]}(\delta)$ for all ordinal $\delta \in J_{\alpha}[x]$, we show that $\pi_U^{J_{\alpha}[x]} = \pi_U^{L[x]}|_{J_{\alpha}[x]}$. For arbitrary $a \in J_{\alpha}[x]$, we have $\delta < \kappa^{+L[x]}$ s.t. $L[x] \models rank_{<_{L[x]}}(a) = \delta$. By Σ_1 elementariness of ultrapower embedding, $Ult(L[x], U) \models$

 $\begin{aligned} & rank_{<_{L[x]}}(\pi_{U}^{L[x]}(a)) = \pi_{U}^{L[x]}(\delta). \text{ Hence } L[x] \models rank_{<_{L[x]}}(\pi_{U}^{L[x]}(a)) = \pi_{U}^{L[x]}(\delta) = \\ & \pi_{U}^{J_{\alpha}[x]}(\delta). \text{ This shows that } \pi_{U}^{L[x]}(a) = \pi_{U}^{J_{\alpha}[x]}(a). \end{aligned}$

(b) As for $f: \kappa \to J_{\alpha}[x]$ that is $\in J_{\alpha}[x]$, $\pi_U^{\mathcal{M}}(f)(\kappa) = \pi_U^{L[x]}(f)(\kappa)$ by (a). This shows that $Ult_0(\mathcal{M}) \subseteq Ult(L[x], U)$. Hence $Ult_0(\mathcal{M})$ is transitive.

 $J_{\alpha'}[x] = \{\pi_U^{\mathcal{M}}(f)(\kappa) \mid f \in J_{\alpha}[x]^{\kappa} \cap J_{\alpha}[x]\} = \{\pi_U^{\widehat{L}[x]}(f)(\kappa) \mid f \in J_{\alpha}[x]^{\kappa} \cap L[x]\} = \pi_U^{L[x]}(J_{\alpha}[x]).$ For the last equation, the \subseteq side is easy. For the other side, if $a \in \pi_U^{L[x]}(J_{\alpha}[x])$, assume $a = \pi_U^{L[x]}(f)(\kappa)$ where $f \in L[x]^{\kappa} \cap L[x]$, we can alter f to g s.t. $g \in J_{\alpha}[x]^{\kappa} \cap L[x]$ and $a = \pi_U^{L[x]}(f)(\kappa) = \pi_U^{L[x]}(g)(\kappa)$.

(c) by induction.

(d) For $\alpha < \pi(\xi)$, we show that there is $\eta < \xi$ s.t. $\alpha < \pi(\eta)$, which concludes the proof. Let $\alpha = [f]_U \in Ult(L[x], U)$, we may assume $f : \kappa \to \xi$. But as $cf(\xi) > cf(\kappa)$, $supf = \delta < \xi$. Hence $\alpha \le \pi(\delta) < \pi(\delta + 1)$.

By induction we show that $\pi_{0,\alpha}(\xi) = \xi$ and $cf(\xi) > (2^{Card(\kappa)^+})$, the successor case: since $|\kappa_{\alpha+1}| < 2^{Card(\kappa_{\alpha})^+}$, we have by the above conclusion $\pi_{0,\alpha+1}(\xi) = \pi_{0,\alpha}(\xi) = \xi$.

For the limit case since ξ is a limit and $\gamma \leq 2^{Card(\kappa_{\alpha})^{+}}$, we have $cf(\xi) > (2^{Card(\kappa)^{+}})$. $\pi_{0,\gamma}(\xi) = \xi$ since if $\pi_{0,\gamma}(\alpha) \leq \bigcup_{\beta < \gamma} m_{\beta}$ where m_{β} is taking β many power for $|\alpha|$, e.g. $m_{1} = 2^{|\alpha|}$, $m_{1} = 2^{2^{|\alpha|}}$... Which is still less than ξ since ξ is strong limit. \square

11 Problem 10.11

Let $\mathcal{M}_0 = x^{\sharp}$ and $I = \{ \kappa_{\alpha} \mid \alpha < \omega_1 \}$ be the set of countable silver indiscernibles. We aim to show that for each $X \in \mathcal{P}(\omega_1) \cap L[x]$, there is α s.t. either

$$\{\kappa_{\beta} \mid \alpha < \beta\} \subseteq X \text{ or } \{\kappa_{\beta} \mid \alpha < \beta\} \subseteq \omega_1 \setminus X$$

And the conclusion follows from 10.2 (b).

Take the ω_1 iteration of x^{\sharp} , we have that

$$X \in \mathcal{P}(\omega_1) \cap L[x] \Rightarrow X \in \mathcal{M}_{\omega_1}$$

since ω_1 is the largest cardinal in \mathcal{M}_{ω_1} and thus we know that $\mathcal{P}(\omega_1) \cap L[x] = \mathcal{P}(\omega_1) \cap \mathcal{M}_{\omega_1}$ by the argument in 10.10 (a).

Hence, $X = \pi_{\alpha,\omega_1}(Y)$ for some $\alpha < \omega_1$ and $Y \in \mathcal{P}(\kappa_{\alpha}) \cap \mathcal{M}_{\alpha}$. We show that if $X \in U_{\alpha}$ then $\{\kappa_{\beta} \mid \alpha < \beta\} \subseteq X$ and the other case is similar.

The proof mirrors the argument in Lemma 10.9. For arbitrary $\beta > \alpha$, we consider the function for all $\xi \in \omega_1$,

$$\varphi(\xi) = \begin{cases} \xi & \text{if } \xi \le \alpha \\ \xi + \beta - (\alpha + 1) & \text{if } \xi > \alpha \end{cases}$$

By the Shift lemma, we have

 $Y \in U_{\alpha} \iff \kappa_{\alpha+1} \in \pi_{\alpha\alpha+1}(Y) \iff \pi_{0\alpha+1}(\kappa) \in X \iff \pi_{0\beta}(\kappa) = \pi_{\omega_1\omega_1}^{\varphi}(\pi_{0\alpha+1}(\kappa)) \in \pi_{\omega_1\omega_1}^{\varphi}(X) = X$

12 Problem 10.12(Not yet done)

We say a real x codes a structure (M, \in, A) iff for $o(x) : n \mapsto 2n + 1$ and $e(x) : n \mapsto 2n \ \pi(\omega, E_{o(x)}, A_{e(x)}) \cong (M, \in, A)$ where $E_{o(x)}$ denotes the standard coding of o(x) as a well-founded relation and $n \in A_{e(x)} \iff e(x)(n) \neq 0$. π is the transitive collapse.

Claim 6 (Claim 10.12.1). The following relation is Σ_2^1 :

 $(x,y) \in A \iff x \text{ codes a premouse and its iteration up to } ||y||.$

In the sense that for all n, $(x)_n : m \mapsto x(\Gamma(n,m))$ codes a premouse and

$$n_1 E_y n_2 \iff (x)_{n_2} \text{ codes an ultrapower of } (x)_{n_1}$$

Proof. First we show that x codes a premouse is Π^1_1 . x codes a premouse iff $o(x) \in \mathsf{WF}$ and $(\omega, E_{o(x)}) \models ZFC^- + V = L + \mathsf{there}$ is a largest cardinal and say n_κ is the largest cardinal in $(\omega, E_{o(x)})$ ($\omega, E_{o(x)}$) $\models U_{e(x)}$ is a non-trivial normal $< \kappa$ complete ultrafilter on κ .

 $(\omega, E_{o(x)}) \models ZFC^- + V = L + \text{there is a largest cardinal is arithmetical since the relation } (\omega, E_{o(x)}) \models \varphi(n_1 \dots n_m) \text{ is arithmetical.}$ To analyze $(\omega, E_{o(x)}, U_{e(x)}) \models U_{e(x)}$ is a non-trivial normal $< \kappa$ complete ultrafilter on κ , for instance $(\omega, E_{o(x)}, U_{e(x)}) \models U_{e(x)}$ is $< \kappa$ complete. iff

$$\forall n(\pi_x(n) \in \pi_x(n_\kappa) \to \forall X \in [\omega]^\omega (\forall m \in X (m \in U_{e(x)} \land \pi_x(m) \in \pi_x(n)) \to \exists l \in U_{e(x)} (\bigcap \pi_x[X] = \pi_x(l)))$$

Where π_x is the Mostowski collapse. This is a Π_1^1 property, for the Mostowski collapse part see for instance Jech Proof of Lemma 25.25.

Next consider the following relation:

 $(x,y) \in Ult \iff y,x$ both code premice and y codes the ultrapower of x

First we notice the ultrapower equivalence relation for x is given by, for n_1, n_2 that are functions with domain ω in $(\omega, E_{o(x)})$ collapsed,

$$n_1 \equiv n_2 \iff \exists m(m \in U_{e(x)} \land \forall l(\pi(l) \in \pi(m) \to \pi(n_1)(\pi(l)) \in \pi(n_2)(\pi(l))))$$
(*

We have y codes the ultrapower of x iff there is $\equiv_x \subseteq \omega^2$, $f \in \omega^\omega$ s.t. \equiv_x is an equivalent relation satisfying *, f respects \equiv_x and is bijective $\omega \to \{n \in \omega \mid \pi_x(n) \text{ is a function with domain } \omega\}/\equiv_x$,

$$n_1 E_{e(y)} n_2 \iff \exists m (m \in U_{e(x)} \land \forall l (\pi(l) \in \pi(m) \to \pi(n_1)(\pi(l)) \in \pi(n_2)(\pi(l))))$$

and

$$n_1 \in U_{e(y)} \iff m(m \in U_{e(x)} \land \forall l(\pi(l) \in \pi(m) \rightarrow l \in U_{e(x)}))$$

And hence *Ult* is a Σ_1^1 relation.

Hence, let $(x)_n : n \mapsto x(\Gamma(n,m)), (x,y) \in A \iff \forall n_1, n_2(n_2 \text{ is the } E_y \text{ successor of } n_1 \to ((x)_{n_1}, (x)_{n_2}) \in Ult)$, and thus is Δ_2^1 . Moreover, the shows that the section of A along y is also Δ_2^1 . \square

Thus given the claim, we can already prove that for any $\beta < \omega_1^L$ there is $\beta' > \beta$, α s.t. the there is premouse $(J_\alpha, \in, U) \in L$ and the putative iteration of length $\beta' + 1$ whose last model is ill-founded. For each $\beta < \omega_1^L$, pick $y \in \omega^\omega \cap L$ s.t. $||y|| = \beta$, since by Claim the section $A_y = \{x \mid (x,y) \in A\}$ is Δ_2^1 . 0^\sharp witnesses its non-emptiness in V, by Shoenfield absoluteness Cor 7.21 A_y is non-empty in L. say $x \in A_y$. But the minimal premouse coded in x cannot be iterable since otherwise $0^\sharp \in L$, which is nonsense, hence some step of the iteration greater than β must fail.

Next we show that for any $\beta < \omega_1^L$ there is α s.t. there is premouse $(J_{\alpha}, \in U) \in L$ and the putative iteration of length $\beta + 1$ whose last model is ill-founded. Pick the L least element $J_{\alpha}, \in U$ s.t. there is $x \in A_y$ s.t. $(x)_{n^*}$ codes $J_{\alpha}, \in U$ where n^* is the least element in the order coded by y. We build a tree of attempts to find elementary embeddings from the $\beta + 1$ th iterate of $J_{\alpha}, \in U$ into some large enough model.

13 Problem 10.13

We use the fact that $Col(\omega, < \kappa) = \prod_{\lambda < \kappa}^{fin} Col(\omega, \lambda)$. Let $(\kappa_{\alpha}, \alpha < \omega_{1})$ be the countable Silver indiscernibles, as discussed in problem 10.11. Let $(\mathcal{M}_{\alpha}, \pi_{\alpha\beta}, \alpha \leq \beta < \omega_{1})$ be the iteration of x^{\sharp} up to ω_{1} .

We prove by induction that $\alpha < \omega_1$, there is $G_{\alpha} \in V$ s.t. that is $Col(\omega, < \kappa_{\alpha})$ -generic over L[x]. And if $\alpha < \beta$, then G_{α}, G_{β} are consistent in the sense that if $p \in Col(\omega, < \kappa_{\beta})$ has support contained κ_{α} , it holds true that $p \in G_{\alpha} \iff p \in G_{\beta}$

The base case: κ_0 is countable in V and all dense sets in $Col(\omega, < \kappa_0)$ that is in L[x] is already contained in \mathcal{M}_0 , thus is countable. By the generic filter theorem there is $Col(\omega, < \kappa_0)$ generic G_0 over L[x].

The successor case: $Col(\omega, < \kappa_{\alpha+1}) = Col(\omega, < \kappa_{\alpha}) \times \prod_{\kappa_{\alpha} \le \lambda < \kappa_{\alpha+1}}^{fin} Col(\omega, \lambda)$, by a similar argument to the base case, we have $\prod_{\kappa_{\alpha} \le \lambda < \kappa_{\alpha+1}}^{fin} Col(\omega, \lambda)$ generic H over L[x] in V. Let $G_{\alpha+1} = G_{\alpha} \times H$ and by Lemma 6.65 this satisfies the requirement.

The limit case: Define $q \in G_{\gamma} \iff$ the support of q is contained in $\kappa_{\alpha}, q \in G_{\alpha}$. We have that G_{γ} is generic as suppose A is an antichain of $Col(\omega, <\kappa_{\gamma})$, by the fact that ω_{γ} is inaccessible in L[x], by Lemma 6.44 L[x] thinks $|A| < \kappa_{\gamma}$, thus for some $\alpha < \gamma$, and thus A can be considered as an antichain in $Col(\omega, <\kappa_{\alpha})$. By the consistency of G_{γ} w.r.t. G_{α} , it intersects A.

Next, we consider the filter G on $Col(\omega, < \omega_1)$ defined by

 $p \in G \iff$ suppose the support of q is contained in κ_{α} , then $p \in G_{\alpha}$

By the exact same argument as the limit case, we have that G is generic. \square

14 Problem 10.14(Not yet done)

Claim 7 (Claim 10.14.1). A remarkable cardinal is inaccessible.

Proof. To show it is regular, pick arbitrary function $f:\delta\to\kappa$ where $\delta<\kappa$. We pick $\alpha>\kappa$ s.t. f exists in V_α . In the generic extension, there is $\sigma:V_\beta\to V_\alpha$ with critical point $\mu,\sigma(\mu)=\kappa$. Since $V_\beta\models\mu$ is inaccessible, $V_\alpha\models\kappa$ is inaccessible, contradicting the existence of f. The proof for strong limit is similar. \square

Claim 8 (Claim 10.14.2). For regular κ , κ -c.c. forcing preserves stationary in $[\lambda]^{<\kappa}$

Proof. For arbitrary \dot{C} s.t. $p \Vdash \dot{C}$ is club, we pick τ s.t. $p \Vdash \tau \in \dot{C}$. We subsequently pick nice name τ_n , $X_n \in V$ s.t. $p \Vdash \tau_n \in \dot{C}$, $p \Vdash \check{X}_n \subseteq \tau_n$, $X_n \in [\lambda]^{<\kappa}$ and $ran(\tau_n) \subseteq X_n \in [\lambda]^{<\kappa}$. The final requirement is doable by κ -c.c. forcing. The sequence is definable in V, and thus we take $\bigcup_n X_n$, which is in V and p forces it to be in \dot{C} . This argument shows that the limit point of \dot{C}_G is a club set in V. This entails that the forcing preserves stationary in $[\lambda]^{<\kappa}$. \square

(a) For arbitrary α , pick $\sigma: V_{\beta} \to V_{\alpha}$ in V[G] s.t. $crit(\sigma) = \mu$ and $\sigma(\mu) = \kappa$. The idea is to show that in, $S = \{X \in [V_{\beta}]^{\omega} \mid X \prec V_{\beta}, X \cap \mu \in \mu, \exists \beta' X \cong V_{\beta'}\}$ is stationary and lift this statement via σ , then use the stationary preservation.

Now by the proof of Madgidor's characterisation of supercompact cardinal problem 4.29 and problem 4.30, we have that there is a normal V-ultrafilter U on $([V_{\beta}]^{<\mu})^V$ generated by

$$X \in U \iff \sigma[V_{\beta}] \in \sigma(X)$$

Hence we obtain that the set S is in U as of course $\sigma[V_{\beta}] \in \sigma(S) = \{X \in [V_{\alpha}]^{\omega} \mid X \prec V_{\alpha}, X \cap \kappa \in \kappa, \exists \beta X \cong V_{\beta}\}$. This means that S intersects all V club in $[V_{\beta}]^{<\mu}$. Lift this up and hence $\{X \in [V_{\alpha}]^{<\kappa} \mid X \prec V_{\alpha}, X \cap \kappa \in \kappa, \exists \beta' X \cong V_{\beta'}\}$ intersects all V club in $[V_{\alpha}]^{<\kappa}$. Since $Col(\omega, < \kappa)$ is κ - c.c., stationary set of $[V_{\alpha}]^{<\kappa}$ is preserved and hence it is stationary in $[V_{\alpha}]^{\omega}$ in V[G]. \square

- (b) If 0^{\sharp} exists, for Silver indiscernible
- (c) If κ is a remarkable cardinal in V, then for arbitrary α there is in V[G] an elementary embedding $\sigma: V_{\beta} \to V_{\alpha}$ with $crit(\sigma) = \mu$ and $\sigma(\mu) = \kappa$. It suffice to argue that some embedding $\sigma': (V_{\beta})^L \to (V_{\alpha})^L$ exists in L[G].

Claim 10.14.3 If $j:M\to N$ is an elementary embedding in V and M is countable, then for any transitive model H that knows enough ZFC so that well-foundedness is absolute s.t. $M,N\in H$ and M is countable in H, then there is elementary embedding $j':M\to N$ in H^{}

Proof. Define the following tree of partial elementary map: Fix an enumeration $m_i, i \in \omega$ of elements in M. $p \in T$ is a partial elementary map from M to N with finite domain. $p_1 \leq p_2$ if p_1 is an end extension of p_2 . Then we have

T is ill-founded
$$\iff \exists i: M \to N \text{ elementary}$$

By the assumption that ill-foundedness is absolute between M and N, we obtain the desired result.

Now $\sigma|_{(V_{\beta})^L}$ is an elementary map from countable structure V_{β}^L to V_{α}^L . V_{β}^L is still countable in L[G] as $\beta < \kappa$. By the claim 10.14.3 we thus obtain that such an elementary map exists in L[G]. \square

15 Problem 10.16

Claim 9 (Claim 10.16.1). If V is closed under sharps then for all $X \subseteq Ord$ and $X \in V$, X^{\sharp} exists.

This is essentially Jech Exercise 18.2

Proof of Claim: We take $\kappa > |X|$ and take H generic over $Col(\omega,\kappa)$, then X is countable in V[G] and hence X^{\sharp} exists. But the statement that X^{\sharp} exists is equivalent to the statement that L[X] has a proper class of Silver indiscernibles. Take $\{\kappa_{\alpha} \mid \alpha > \beta\}$ be the class of cardinals in V[G] greater than $|\mathbb{P}|$, they are also cardinals in V. Notice $L \models \varphi(\kappa_{\alpha_1} \dots \kappa_{\alpha_n})$ iff $L \models \varphi(\kappa_{\alpha'_1} \dots \kappa_{\alpha'_n})$, is absolute for V[G] and V and hence $\{\kappa_{\alpha} \mid \alpha > \beta\}$ is a proper class of Silver indiscernibles in V. This shows that X^{\sharp} exists in V. \square

Let G be generic over \mathbb{P} . Let A be such that $V[G] \models x \in A \iff \exists y \varphi(x, y, z)$ for some φ that is $\Sigma_2^1(z)$. We take $X \in V$ s.t. $\mathbb{P} \in X^{\sharp} = (J_{\alpha}[X], \in, U)$ and $\mathbb{P} \in J_{\kappa}[X]$, where κ is the largest cardinal in $J_{\alpha}[x]$. Say

$$p \Vdash \varphi(\tau_1, \tau_2, z)$$

We take $\pi: N \to X^{\sharp}$ elementary be s.t. N countable transitive, $\pi(q) = p$ and $\pi(\mathbb{Q}) = \mathbb{Q}$, $\pi(\sigma_1) = \tau_1$ and $\pi(\sigma_2) = \tau_2$. Hence

$$N \models q \Vdash \varphi(\tau_1, \tau_2, z)$$

By assumption that $\mathbb{P} \in J_{\kappa}[X]$, \mathbb{Q} is contained in the part that is not moved by iteration.

By Claim 10.1.1, we may iterate N up to ω_1 , call it N_{ω_1} , then $\omega_1 \subseteq N_{\omega_1}$ and $q, \mathbb{Q}, \sigma_1, \sigma_2$ is unchanged under the iteration. Notice that the subsets of \mathbb{Q} in N_{ω_1} are already appearing in N, which is countable. Hence, there is a \mathbb{Q} generic $g \in V$ over N_{ω_1} , and we have

$$N_{\omega_1}[g] \models \varphi(\sigma_{1q}, \sigma_{2q}, z)$$

As $\sigma_{1q}, \sigma_{2q} \in V$ by Shoenfield absoluteness,

$$V \models \exists x, y \varphi(x, y, z)$$

Concluding the proof. \square

16 Problem 10.17

Right to Left: Assume for contradiction that $\cdots \in [a_2, f_2] \in [a_1, f_1]$. By Lemma 10.64, we may have

$$h_{Ult_0(V:E)}(\{[a_n, f_n] \mid n \in \omega\}) \prec_{\Sigma_0} Ult_0(V; E)$$

and Σ_0 elementary map

$$\varphi: h_{Ult_0(V;E)}(\{[a_n, f_n] \mid n \in \omega\}) \to V$$

This leads to the non well-foundedness of V, a contradiction.

Left to Right: Assume $Ult(V, E) \cong M$ is well founded. Let j_E be the extender embedding. Consider the tree

$$U := \{ s \mid \exists k \in \omega(s : \bigcup_{i \leq k} a_i \to \kappa \land s \text{ is order preserving } \land \forall i \leq k, s[a_i] \in X_i) \}$$

where the order is $s_1 \prec s_2 \iff s_2 \subset s_1$. The inverse of $j|_{\bigcup_{i \in \omega} a_i}$ witnesses that j(U) is not a well-founded tree as for each k,

$$(j|_{\bigcup_{i\leq k} j(a_i)})^{-1}: \bigcup_{i\leq k} j(a_i) \to j(\kappa)$$
 is order preserving and $\forall i\leq k(j|_{\bigcup_{i\leq k} j(a_i)})^{-1}(j(a_i))=a_i\in X_i$

By the absoluteness of well-foundedness, j(U) is not well-founded in M, and thus U is not well-founded in V by elementarity. This gives the desired map. \square

17 Problem 10.18

- (1) For $cf(\alpha) < \kappa$, the argument is exactly the same as Lemma 4.52 (c). For $cf(\alpha) > \kappa$, let $\beta_{\gamma} \to \alpha, \gamma \to cf(\alpha)$. Of course $\bigcup_{\gamma \to cf(\alpha)} \pi_E \beta_{\gamma} \le \pi_E \alpha$. For arbitrary $\xi < \pi_E \alpha$, $\xi = [a, f]$ for some $a \in [\nu]^{<\omega}$, $f : [\mu_a]^{|a|} \to \alpha$. By the fact that E is a short extender, we have $|\mu_a| \le \kappa$, then f has to be bounded by some $\pi_E \beta_{\gamma}$, hence $\xi < \pi_E \beta_{\gamma}$.
- (2) Pick a cofinal sequence $\beta_{\gamma} \to \lambda, \gamma \to cf(\lambda)$. By (1) we thus have $\sup_{\gamma \to cf(\lambda)} \pi_E \beta_{\gamma} = \pi_E \lambda$. We show that $\pi_E \beta_{\gamma} < \lambda$ and this concludes the proof. Since each $\xi < \pi_E \beta_{\gamma}$ is of the form $\xi = [a, f]$ for some $a \in [\nu]^{<\omega}$, $f : [\mu_a]^{|a|} \to \beta_{\gamma}$, and as E is a short extender, we have $|\mu_a| \leq \kappa$. We have that $|\pi_E \beta_{\gamma}| \leq |\nu \times \beta_{\gamma}^{\kappa}| < \lambda$. This concludes the proof. \square

18 Problem 10.19

Ultrafilter Property: For $\alpha < \kappa$, $(Y_i \mid i < \alpha) \in V[G] \cap E_a^{*\alpha}$. Let $p \in G$. Let A_i be a maximal antichain, definable in V, of elements $p \leq q$ s.t. $\exists X_{q,i}, q \Vdash X_{q,i} \subseteq \dot{Y}_{\alpha}$. Then since $|\mathbb{P}| < \kappa$, $|A_i| < \kappa$ and hence

$$\bigcap_{i < \alpha} Y_i \supseteq \bigcap_{i < \alpha, q \in A_i} X_{i,q} \in E_a$$

To Checking that this is an ultrafilter, upward closedness is easy. For $Y \in [\mu_a]^{|a|} \cap V[G]$, consider the following sets, definable in V: $D_u := \{p \mid p \Vdash u \in \dot{Y}\}, F_u = \{u \mid p \Vdash u \notin \dot{Y}\}$. By the fact that κ is inaccessible in V, $\{D_u \mid u \in [\mu_a]^{|a|}\} \subseteq \mathcal{P}(|\mathbb{P}|)$ and thus is of cardinality less than κ . Hence there is $X \in E_a$ s.t. $D_u = D_{u'}, F_u = F_{u'}$ for all $u, u' \in X$. Now $D_u \cup F_u$ is dense in \mathbb{P} and hence G intersects elements of it, but it can't intersect element from both D_u and F_u . If $G \cap D_u$ is not empty, then $Y \supseteq X$ and hence $Y \in E_a^*$, the other side is similar.

Remark:If we naively take $(X_i \mid i < \alpha)$ subsets of $(Y_i \mid i < \alpha)$, the sequence might not be in V. We circumvent this by considering all possible subsets of Y_i in U.

We notice that (*) for all ordinal μ , $[\mu]^{|a|} \in E_a \iff [\mu]^{|a|} \in E_a^*$ and hence μ_a is the smallest μ s.t. $[\mu]^{|a|} \in E_a \iff [\mu]^{|a|} \in E_a^*$.

Coherence: For $Y \in E_a^*$ and $b \supseteq a$, we have that $Y \supseteq X$ for some $X \in E_a$ and thus $X^{ab} \in E_b$. Since $X^{ab} \subseteq Y^{ab}$, $Y^{ab} \in E_b^*$.

The other side follows from the fact that if $Y \notin E_a^*$, then $[\mu_a]^|a| - Y \in E_a^*$ but $[\mu_a]^|a| - Y^{ab} \cap Y^{ab} = \emptyset$.

Uniformity follows from (*).

Normality: Take $f: [\mu_a]^{|a|} \to \mu_a$ with $f \in V[G]$,

$$p \Vdash \exists X, X \subseteq \{u \mid \dot{f}(u) < max(u)\}$$

Case 1: $\mu_a < \kappa$. We have $p \Vdash \bigcup_{g:[\mu_a]^{|a|} \to \mu_a} \{u \mid g(u) = \dot{f}(u)\} = [\mu_a]^{|a|}$ since $p \Vdash \exists g: [\mu_a]^{|a|} \to \mu_a, g(u) = \dot{f}(u)$ for all u. Since there are at only $|\mu_a|^{\mu_a}$ many such functions $g: [\mu_a]^{|a|} \to \mu_a, \ p \Vdash \exists g, \{u \mid g(u) = \dot{f}(u)\} \in E_a$. Since we have $\{u \mid g(u) < max(u)\} \in E_a$, we obtain by normality that there is β s.t. $\{u \mid g^{a,a \cup \{\beta\}}(u) < max(u)\} \in E_{a \cup \{\beta\}}$. The conclusion follows as

$$\{u \mid g^{a,a \cup \{\beta\}}(u) < \max(u)\} \cap \{u \mid g^{a,a \cup \{\beta\}}(u) = \dot{f}^{a,a \cup \{\beta\}}(u)\} \subseteq \{u \mid \dot{f}^{a,a \cup \{\beta\}}(u) < \max(u)\}$$

Case 2: $\mu_a \ge \kappa$. Idea: $< \kappa$ forcing should preserve stationary sets for $[\mu_a]^{<\omega}$, $\mu_a > \kappa$.

Claim 10 (Claim 10.19.1). For κ regular, forcing of size $< \kappa$ preserves stationary sets on μ where $\mu \ge \kappa$.

Proof of Claim. It suffice to show that if $p \Vdash \dot{C}$ is a club, then $p \Vdash \{\alpha \mid \alpha \in \dot{C}\}$ is a club. That $p \Vdash \{\alpha \mid \alpha \in \dot{C}\}$ is closed is easy. For α_0 s.t. $p \Vdash \alpha_0 \in \dot{C}$, we have a name $\dot{\gamma_0}$ for an ordinal s.t. $p \Vdash \alpha_0 < \dot{\gamma_0} \in \dot{C}$. Pick a maximal antichain A under p where $q \in A$ entails $q \Vdash \dot{\gamma_0} = \gamma_q$. By the fact that the forcing is of size $< \kappa$, we have $\alpha_1 = \sup\{\gamma_q \mid q \in A\} < \kappa$ and thus

$$p \Vdash \exists \dot{\gamma_0} \in \dot{C}, \alpha_0 < \dot{\gamma_0} < \alpha_1$$

Repeat this process to find $\alpha_n, n \in \omega$ s.t.

$$p \Vdash \exists \dot{\gamma_n} \in \dot{C}, \alpha_n < \dot{\gamma_n} < \alpha_{n+1}$$

Of course, p thinks $\dot{\gamma_n}$ and α_n shares a limit, and by closedness of \dot{C} , $\lim_{n \in \omega} \alpha_n \in \{\alpha \mid \alpha \in \dot{C}\}$. \square

Remark: The argument actually works for κ c.c. posets, and is the argument used to show that c.c.c. forcing is proper.

Proof of case 2: Fix an enumeration $\Gamma: [\mu_a]^{|a|} \to \mu_a$ satisfying $\Gamma(u) > \max(u)$. And consider the induced map $\Gamma: \mathcal{P}([\mu_a]^{|a|}) \to \mathcal{P}(\mu_a)$

Then, the normality of E_a is equivalent to saying that $\{\Gamma(X) \mid X \in E_a\}$ contains all closed sets in μ_a (normal as an ultrafilter on μ_a). Then the conclusion follows by Claim 10.19.1. \square

Next, we show that the two large cardinals are preserved under small forcing.

Claim 11 (Claim 10.19.2). For forcing \mathbb{P} of size $< \kappa$, the extender elementary embedding $\pi_E : V \to Ult(V, E)$ extends to elementary $\pi_{E^*} : V[G] \to Ult(V[G], E^*)$, satisfying

$$\pi_{E^*}: \tau_G \mapsto \pi_E(\tau)_G = [\emptyset, c_{\tau_G}]_{E^*}$$

And consequently, $Ult(V[G], E^*) = Ult(V, E)[G]$.

Proof. To show that π_{E^*} is elementary, it suffice to show that $\pi_E(\tau)_G = ([\emptyset, c_{\tau}]_E)_G = [\emptyset, c_{\tau_G}]_{E^*}$. We prove by an induction on the well-foundedness of elements in $Ult(V[G], E^*)$ that

$$[a, \dot{f}_G]_{E^*} = ([a, \dot{f}]_E)_G$$

Notice as the domain $[\mu_a]^{|a|}$ is absolute, here we can slightly abuse the notation, by \dot{f} refers to both the function from $[\mu_a]^{|a|}$ to names and a name of the function from $[\mu_a]^{|a|}$ to elements in V[G].

Say for $[b, \dot{g}_G]_{E^*} \in [a, \dot{f}_G]_{E^*}$, by IH we have $[b, \dot{g}_G]_{E^*} = ([b, \dot{g}]_E)_q$.

$$[b, \dot{g}_G]_{E^*} \in [a, \dot{f}_G]_{E^*} = \exists X \in E_{a \cup b}, X \subseteq \{u \in [\mu_{a \cup b}]^{|a \cup b|} \mid \dot{g}_G^{b, a \cup b}(u) \in \dot{f}_G^{a, a \cup b}(u)\}$$

$$\iff \exists X \in E_{a \cup b}, X \subseteq \{u \in [\mu_{a \cup b}]^{|a \cup b|} \mid \exists p \in G, p \Vdash \dot{g}^{b, a \cup b}(u) \in \dot{f}^{a, a \cup b}(u)\}$$

$$\iff \exists p \in G, p \Vdash \{u \in [\mu_{a \cup b}]^{|a \cup b|} \mid \dot{g}^{b, a \cup b}(u) \in \dot{f}^{a, a \cup b}(u)\} \in E_{a \cup b}$$

$$\iff ([b, \dot{g}]_E)_G \in ([a, \dot{f}]_E)_G$$

Here the only non trivial step is (*), where left to right is by the fact that $|G| < \kappa$ and $E_{a \cup b}$ is $< \kappa$ complete. \square

Proof of the preservation of large cardinals.

For κ a strong cardinal, we take arbitrary $\alpha \geq \kappa + 2$, and show that there is $j: V[G] \to M$ elementary with $crit(j) = \kappa$, $(V_{\alpha})^{V[G]} \subseteq M$.

Let E be the κ, ν -extender obtained in Lemma 10.58 where $\alpha < \nu$. For $x \in (V_{\alpha})^{V[G]}$, as $|\mathbb{P}| < \kappa$ we may assume $\mathbb{P} \in V_{\kappa}$, we have $\dot{x} \in V_{\alpha}$ thus in Ult(V,U). By Claim 10.19.2 $Ult(V[G],E^*) = Ult(V,E)[G]$ computes the name correctly and thus $x = \dot{x}_G \in Ult(V[G],E^*)$. Hence $(V_{\alpha})^{V[G]} \subseteq Ult(V,E^*)$. This concludes the proof that κ is strong in V[G].

For κ a supercompact cardinal, similarly, let E be given by Lemma 10.61 and we aim to show that $Ult(V[G], E^*)^{\lambda} \subseteq Ult(V[G], E_*)$.

For $\{[a_i, \dot{f}_{i_G}]_{E^*} \mid i < \lambda\} \subseteq Ult(V[G], E^*)$, we have by Claim 10.19.2 that $\{([a_i, \dot{f}_i]_E)_G \mid i < \lambda\} \subseteq Ult(V, E)[G]$. This shows that $\{[a_i, \dot{f}_i]_E \mid i < \lambda\} \subseteq Ult(V, E)$. By λ closedness of Ult(V, E) and pass it back to $Ult(V[G], E^*)$, we are done. \square

19 Problem 10.20

This is similar to preservation of strongness. Given δ Woodin in V, it suffice to show for $A \subseteq (V_{\delta})^{V[G]}$ there is κ s.t. for any $\alpha < \kappa$ there is elementary $\pi : V[G] \to M$ s.t. $crit(\pi) = \kappa, (V_{\alpha})^{V[G]} \subseteq M$ and $\pi(A) \cap (V_{\alpha})^{V[G]} = A \cap (V_{\alpha})^{V[G]}$.

Fix $A \subseteq (V_{\delta})^{V[G]}$, \mathbb{P} being small, we may assume in the similar fashion as in proof of preservation of strongness that A, the name of A, to be a subset of V_{δ} . We apply Lemma 10.77 and pick κ satisfying the for all $\alpha < \kappa$ there is certified E s.t. $\pi_E : V \to M$ is elementary and $crit(\pi) = \kappa$, $V_{\alpha} \subseteq M$ and $\pi_E(A) \cap V_{\alpha} = A \cap V_{\alpha}$.

It suffice to show that for any $\alpha > |\mathbb{P}| + 2$, the corresponding E satisfies: $\pi_{E_*}(A) \cap (V_{\alpha})^{V[G]} = A \cap (V_{\alpha})^{V[G]}$. We have by claim 10.19.2,

$$\begin{split} \tau_G \in (V_\alpha)^{V[G]} \cap A &\iff \exists p \in G, p \Vdash \tau \in \dot{A} \cap V_\alpha \\ &\iff \exists p \in G \exists B \text{ a maximal antichain under } p, B \times \{\tau\} \subseteq \dot{A} \cap V_\alpha \\ &\iff \exists p \in G \exists B \text{ a maximal antichain under } p, B \times \{\tau\} \subseteq \pi_E(\dot{A}) \cap V_\alpha \\ &\iff \exists p \in G, p \Vdash \tau \in \pi_E(\dot{A}) \cap V_\alpha \\ &\iff \tau_G \in (V_\alpha)^{V[G]} \cap (\pi_E(\dot{A}))_G = (V_\alpha)^{V[G]} \cap \pi_{E_*}(A) \end{split}$$

This concludes the proof. \Box

20 Problem 10.21

Don't know how to argue via extenders, don't know how to show the derived extender is λ closed. We solve this probem by proving the equivalence of Problem 10.22 first, and using Problem 10.22,

Assume for contradiction that κ is not supercompact, then let $\lambda \geq \kappa$ be the least cardinal s.t. there is no ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ witnessing κ is not λ supercompact. This is a first order property.

Pick α s.t. $V_{\alpha}^{\lambda} \subseteq V_{\alpha}$, any limit α s.t. $cf(\alpha) > \lambda$ would satisfy the property. Then by assumption there is $\mu < \beta < \kappa \leq \lambda < \alpha$ s.t. there is $\sigma : V_{\beta} \to V_{\alpha}$ elementary, with $crit(\sigma) = \mu$. Notice $V_{\beta} \models$ there is least δ s.t. there is no ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ witnessing μ is not δ supercompact. Say δ is a witness of this statement, then by elementarity $\sigma(\delta) = \lambda$.

But deriving an ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ from σ satisfying the conditions in 4.30, by Problem 10.22 the ultrafilter U in V_{β} witnesses the $\sigma^{-1}(\xi) = \delta$ supercompactness of μ in V_{β} . This is a contradiction.

The use of ultrafilter turns the second-order property supercompactness to a first order property. cf. problem 10.23

21 Problem 10.22

For U a $<\kappa$ complete ultrafilter on $[\lambda]^{<\kappa}$, we show that the map $\pi_U:V\to Ult(V,U)$ witnesses that κ is λ supercompact. Here Ult(V,U) is the ordinary

ultrapower construction, adapted to U and $[\lambda]^{<\kappa}$. We omit the proof of Los theorem.

Step 1 $[id]_U = \pi_U[\lambda]$.

 \supseteq is by the first property and Los theorem: For $\alpha \in \lambda$, $\{a \in [\lambda]^{<\kappa} \mid \alpha \in a\} \in U$ and thus $\pi_U(\alpha) \in [id]_U$.

 \subseteq is by the second property, which is clearly the analogue of normality. Suppose $[f]_U \in [id]_U$, then we have $\{a \mid f(a) \in a\} \in U$, let $X_\alpha := \{a \mid f(a) = \alpha\}$. Suppose for contradiction that $X_\alpha \notin U$ for all $\alpha < \lambda$, then by the second property of the ultrafilter, there is $X \in U$ s.t. if $\alpha \in a \in X$, then $a \notin X_\alpha$, i.e. $f(a) \neq \alpha$. This set must be disjoint from $\{a \mid f(a) \in a\}$. This is a contradiction. Hence some $X_\alpha \in U$, entailing $[f]_U = \pi_U(\alpha) \in \pi_U[\lambda]$.

Step 2 $M^{\lambda} \subseteq M$.

Say $\{[f_{\alpha}] \mid \alpha < \lambda\} \subseteq M$. Let $g : [\lambda]^{<\kappa} \to V$ be s.t. g(a) is a function $a \to V$, $g(a)(\alpha) = f_{\alpha}(a)$.

By Los theorem, $[g]_U$ is a function from $\pi_U[\lambda] \to Ult(V, U)$ and for every $\alpha \in \lambda$, $[g](\pi_U(\alpha)) = [f_{\alpha}]$. Hence $ran([g]) = \{[f_{\alpha}] \mid \alpha < \lambda\} \in M$.

Step 3 $crit(\pi_U) = \kappa, \ \lambda < \pi_U(\kappa).$

 $crit(\pi_U) \geq \kappa$ holds by $< \kappa$ -completeness and the standard argument. We have $ot([id]_U) < \pi_U(\kappa)$ as $\{a \in [\lambda]^{<\kappa} \mid ot(a) < \kappa\} = [\lambda]^{<\kappa} \in U$. Moreover for arbitrary $\gamma < \kappa$, $\gamma \leq ot([id]_U)$ since

$${a \in [\lambda]^{<\kappa} \mid \gamma \le ot(a)} \supseteq \bigcap_{\alpha < \gamma} {a \mid \alpha \in a} \in U$$

By the first property and $< \kappa$ completeness. This shows that $\kappa \le ot([id]_U) < \pi_U(\kappa)$ and thus $crit(\pi_U) = \kappa$.

Finally, $\lambda = ot(\pi_U[\lambda]) = ot([id]_U) < \pi_U(\kappa)$.

This concludes the proof. \Box

22 Problem 10.23

Claim 12 (Claim 10.23.1). Every subcompact cardinal is inaccessible.

For arbitrary $A \subseteq V_{\delta}$, $A \subseteq H_{\delta^+}$. We find $\sigma: (H_{\lambda^+}, B) \to (H_{\delta^+}, A)$. For $crit(\sigma) = \mu$, σ satisfy for arbitrary $\beta < \lambda$, $V_{\beta} \subseteq H_{\delta^+}$ and $\sigma(B) \cap V_{\beta} = B \cap V_{\beta}$.

Work as the proof of Claim 10.79 in H_{λ^+} and extract an (μ, λ) extender E witnessing $\pi_E(B) \cap V_{\beta} = B \cap V_{\beta}$, the extender is in H_{λ^+} .

Pass the statement to H_{λ^+} , A and hence for all $\alpha < \delta$ there is $\sigma(\mu)$, there is $\sigma(E)$ a $(\sigma(\mu), \delta)$ extender on $\sigma(\mu)$, witnessing $A \cap V_{\alpha} = \pi_{\sigma(E)}(A) \cap V_{\alpha}$. \square

23 Problem 10.24

Let $x := \bigcup \{s \mid \exists T \in G, s \text{ is the stem of } T\}$. For arbitrary $\delta \in [\kappa, \lambda]$ s.t. $cf(\delta) \ge \kappa$, we show that $\{\sup(a \cap \delta) \mid a \in x\}$ is unbounded in δ . And the conclusion $cf^{V[G]}(\delta) = \omega$ follows.

To that end, it suffice to show that

$$\{T \mid s \text{ is the stem of } T, \exists a \in s, \gamma \le \sup a, a \cap [\gamma, \delta) \ne \emptyset\}$$
 (*)

is dense. Such a satisfying the property above would have $\gamma \leq \sup(a \cap \delta) < \delta$ by $cf(\delta) \geq \kappa$.

For arbitrary T in the forcing with stem s, we notice that $\{a \mid s \frown a \in T\} \in U$ contains a set a^* that contains γ , that's because $\{a \mid \gamma \in a\} \in U$. Let T' be the subtree of T with stem $s \frown a^*$. This tree witnesses (*) property.

Claim 13 (Claim 10.24.1). For all T and formula $\varphi(\tau_1 \dots \tau_n)$, there is $T' \leq T$ with the same stem that decides the formula.

Proof of Claim, For a tree T in the forcing with stem s, we use the notation (s,T) to make explicit its stem. For condition (s,T), define as in proof of Claim $10.7\ F: [X]^{<\omega} \to 3$ as follows:

$$F(s') = \begin{cases} 0 & \text{if there is no } T' \text{ s.t. } (s \cup s', T') \text{ decides } \varphi \\ 1 & \text{if there is } T' \text{ s.t. } (s \cup s', T') \text{ forces } \varphi \\ 2 & \text{if there is } T' \text{ s.t. } (s \cup s', T') \text{ forces } \neg \varphi \end{cases}$$

By definability of forcing, $F \in V$ and thus by Rowbottom's theorem there is $Y \in U$ s.t. for each $n \in \omega$, F is constant on $[Y]^n$.

Let (s,T') be the subtree of (s,T) defined recursively satisfying if $a \in succ_T(b)$, then

$$a \in T' \iff a \in succ_{T'}(b) \cap Y$$

(s,T') is the subtree of (s,T) slimed at every node by Y.

We show that (s, T') decides φ . If not, then there is $(b_1, T_1), (b_2, T_2) \leq (s, T')$ s.t. $(b_1, T_1) \Vdash \varphi$ while $(b_2, T_2) \Vdash \neg \varphi$. May assume $|b_1| = |b_2| = |a| + n$. But by design $b_1 \setminus a, b_2 \setminus a \in [Y]^n$ while $F(b_1 \setminus a) \neq F(b_2 \setminus a)$. This is a contradiction. \square

Proof of $V_{\kappa} = V_{\kappa}^{V[G]}$: This is similar to Lemma 10.6. In the final step we take $q = (a, \bigcap_{\xi < \lambda} T_{\xi}), \bigcap_{\xi < \lambda} T_{\xi}$ is still a valid tree by $< \kappa$ completeness of the ultrafilter. \square

24 Problem 10.25

Assume for contradiction that $E_0 >_M E_1 >_M E_2 \dots$ Consider the following iteration tree where $<_T := \{0\} \times \mathbb{N}^+$, $M_0 = V$, $M_{n+1} = Ult(M_0, E_n)$. As $E_n \in M_n$ by definition of Mitchell order, this is a one-level, infinitely branching iteration tree. This contradicts Theorem 10.74 as there is no infinite branch in this tree. \square