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1 Problem 10.1

Claim 1 (Claim 10.1.1). Let π : M̄ → M be elementary and π(Ū) = U . If a
putative iteration of M of length α+1 is an iteration, then a putative iteration
of M̄ of length α+ 1 is an iteration.

Proof of claim: We recursively define, for ξ ≤ α + 1, πξ : M̄ξ → Mξ by
setting πξ+1([f ]Ūξ

) = [πξ(f)]Uξ
, πλ where λ is a limit to be the direct limit map

given by πλ(̄iξ,λ(f)) = iξ,λ · πξ(f).
Then the final map πα+1 : M̄α+1 → Mα+1 witness the wellfoundedness of

M̄α+1. □
Let T be a putative iteration of M of length α+1. We pick θ large enough,

X a ctm, and π : X → Vθ that is elementary w.r.p the language with predicate
∈, T ,M. Let π(T̄ ) = T , π(M̄) = M. Then

X |= T̄ is a putative iteration of M̄

This is an absolute statement and hence T̄ is a putative iteration of M̄, as
T̄ ∈ X, its length is less than ω1. By Claim 10.1.1 and the assumption
in the problem we have T̄ is an iteration of M̄, i.e. M̄α+1 is well-founded.
Hence X |= T̄ is an iteration of M̄. By elementariness and passing to Vθ,
T is an iteration of M. This concludes the proof that M is iterable.

cf. Lemma 2.4, Lemma 2.5 in John Steel’s note on Itreated Ultrapowers.

2 Problem 10.2

(a) We show by an induction on α ∈ Ord that

Mα = {π0,α(f)(a) | a ∈ {κβ | β < α}<ω, f : [κ]|a| →M0}

The base case α = 0 is trivial.
Induction step for successor α+ 1:

Mα+1 = Ult(Mα, Uα)

= {πMα

Uα
(g)(κα) | g ∈Mκα

α }

= by IH, {πα,α+1(π0,α(f)(a))(κα) | a ∈ {κβ | β < α}<ω, f : [κ]|a| →Mκ
0 }

= {π0,α+1(f
′)(a ∪ {κα}) | a ∈ {κβ | β < α}<ω, f ′ : [κ]|a|+1 →M0}
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The final equation holds as πα,α+1(a) = (a) for a ⊆ {κβ | β < α}. This equation
shows the ⊆ direction of the desired result. The other side is obvious.

Induction step for limit λ:

x ∈Mλ ⇐⇒ ∃α < λ, ∃y ∈Mα, x = πα,λ(y)

⇐⇒ ∃α < λ, ∃a ∈ {κβ | β < α}<ω,∃f : [κ]|a| →Mκ
0 , (x = πα,λ(π0,α(f)(a)))

⇐⇒ ∃α < λ, ∃a ∈ {κβ | β < α}<ω,∃f : [κ]|a| →Mκ
0 , (x = π0,λ(f)(a))

This concludes the proof.
This exercise shows that Mα = hM (ran(π0,α), {κβ | β < α}).
(b) As κα, α ∈ Ord satisfy κα < κβ if α < β, it is unbounded in Ord.
For arbitrary sequence (καµ

, µ < λ) where λ is a limit, we show that⋃
µ<λ καµ

= κ⋃
µ<λ αµ

. Let θ =
⋃

µ<λ αµ.

≤ is immediate. For the other side, if γ < κθ, then γ = παµ,θ(γ
′) for some

µ < λ and by the construction of direct limit. γ′ < καµ by elementarily. It
follows that γ′ = γ and hence γ < καµ .

(c) For limit ordinal λ, for arbitrary X ∈ κλ∩Mλ, we have that there is some
α < λ s.t. πα,λ(Y ) = X and Y ∈ Uα. We show that for all β s.t. α ≤ β < λ, we
have κβ ∈ X. Then Z := πα,β(Y ) ∈ Uβ . Hence κβ ∈ πβ,β+1(Z) ⊆ π(β, γ)(Z) =
X by normality of Uβ . Hence κβ ∈ X.

The statement is false for successor ordinals, as in this case the statement
we are supposed to prove reduces to Mα+1 |= Uα+1 is principal.

(d) The statement contains an error, µ should be λ.
To see the statement makes sense, it follows from the proof of (b) that

κλ = limβ<λ κβ . We have κβ ≤ |β| · 2κ < λ by a function counting argument,
and hence κλ = limβ<λ κβ ≤ λ. This means κλ = λ.

The fact that Uλ ⊆ Fλ∩Mλ follows from (c) and (b). The otherside follows
as Uλ is an ultrafilter in Mλ □

3 Problem 10.3

(a) L[U ] = L[Ū ] is standard exercise. To verify L[U ] |= Ū is a measure on κ,
κ ∈ Ū as κ ∈ L[U ] and κ ∈ U .
If X1, X2 ∈ Ū = L[U ] ∩ U , then X1 ∩X2 ∈ L[U ] ∩ U . Upward closure and

the property for complement is similarly verified.
If (Xα, α < µ) ∈ L[U ] for some µ < κ andXα ∈ L[U ]∩U , then

⋂
α<µXα ∈ U

and
⋂

α<µXα ∈ L[U ], hence
⋂

α<µ ∈ Ū .
(b) Same as 10.2 (d), µ should be λ. By elementarity Mλ |= V = L[Uλ].

Hence Mλ = L[Uλ]. As by 10.2 (d) Uλ = F
L[U ]
λ ∩Mλ = Fλ∩Mλ, Mλ = L[Fλ].

4 Problem 10.4

(a) Let λ > 2κ be regular, we show that there is δ s.t. Mλ = Jβ [Fλ]. First
Mλ |= V = L[π0,λ(U)], it must be of the form Jβ [π0,λ(U)] for some limit β.
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Next, notice that problem 10.2 also works for iterable set model M. Hence
we have π0,λ(U) = Fλ ∩Mλ and hence Mλ = Jβ [Fλ].

Hence two Lµ mouse can be coiterated as we can take λ > max{2κ, 2λ}
where κ, λ are the respective largest cardinal in M,N .

(b) Like in the proof of Claim 10.33, we construct the putative iteration of
length γ+1, (Nα, θα,β | α ≤ β ≤ γ+1) of N0 = Jᾱ[Ū ] and construct the family
of elementary embeddings σα, α ≤ γ + 1 into the iteration (Mα, πα,β | α ≤ β ≤
γ + 1).

For successor step, we set σα+1(θα,α+1(f)(λα)) = πα,α+1(σα(f))(κα). By
the fact that N0 is a model of ZFC−, this map can be elementary instead of
just Σ0 elementary. The limit case can be defined by commutativity of the
diagram.

5 Problem 10.5

Let U be a normal measure on κ. We work in this inner model.
First we show the case for λ < κ: It suffice to show that for each λ and

X ∈ P(λ),
|{Y ∈ P(λ) | Y ⊆ X ∧ Y <L[U ] X}| ≤ λ

Then we would have o(<L[U ] |P(λ)2) ≤ λ+, this validates the conclusion.
Take Jα[U ] large enough s.t. κ, λ ∈ Jα[U ].
Consider the Skolem closure of λ∪{λ} w.r.t. the language with constant cX

for X, and collapse it to form Jβ [U
′] by condensation. Then π : Jβ [U

′] → Jα[U ]
is elementary, U ′ = π−1[U ], |Jβ [U ′]| = λ, π|λ+1 = id and X = π(X ′) for
some X ′ ∈ Jβ [U

′], we notice that actually X = π(X) and thus X ∈ Jβ [U
′] as

π|λ+1 = id.
Now we want to show that, assuming for x, y ⊆ λ, x <L[U ′] y iff x <L[U ] y,

it holds that {Y ∈ P(λ) | Y ⊆ X ∧ Y <L[U ] X} ⊆ Jβ [U
′], which finishes

the proof. If Y <L[U ] X, there is γ s.t. Jα[U ] |= rank<L[U]
(Y ) = γ, then

Jβ [U
′] |= ∃Y ′ ⊆ X, rank<L[U′](Y

′) = γ. By elementarity and the fact that

π|λ+1 = id, such Y ′ is Y and hence Y ∈ Jβ [U
′].

Finally, we verify that for x, y ⊆ λ, x <L[U ′] y iff x <L[U ] y. By theorem
10.3 and Problem 10.4(b), N0 = Jβ [U

′] and M0 = Jα[U ] are Lµ mice and hence
by 10.4(a) they can be co-iterated, i.e. there is γ, γ′ s.t. Mλ = Jβ [Fλ],Nλ =
Jβ′ [Fλ]. And hence M0 |= x <L[U ′] y iff Jβ′ [Fλ], Jβ [Fλ] |= x <L[Fλ] y iff
N0 |= x <L[U ] y by elementariness and the fact that elements under λ are fixed
under iteration.

Remark: In general, when we collapse the structure (N,N ∩ U), we can’t
make sure that the collapsed structure is (N ′, N ′ ∩ U), i.e. not necessarily
elementary to (L[U ], U) for the predicate. Hence the condensation does not
apply and though N ′ would be some Jβ [U

′], we have no idea about whether
U ′ = U ∩ N ′. But in the case when U is a normal measure on κ, coiteration
argument fits the gap.

The case when λ ≥ κ is similar to Godel’s argument that V = L implies
GCH, for x ⊆ λ, the fact that λ > κ means the collapsed structure of (N =
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hL[U ](λ ∪ {x, U}), U ∩ N) to be elementary at the predicate as the collapsing
map would be constant on κ < λ. Hence the condensation applies, this is not
true for λ < κ.

6 Problem 10.6

The proof of Claim 10.22 is standard.
For 10.21 (d), we prove a more general theorem

Claim 2 (Claim 10.6.1). If M0,M1 |= ZFC− and j :M0 →M1 is Σ1 elemen-
tary and cofinal in M1, then actually j is elementary.

Proof of claim cf. Prop 5.1 in Kanamori: We show by an induction on the
Levy hierarchy of formulas. Suppose M0 ≺Σn

M1, we show M0 ≺Σn+1
M1. It

suffice to show that for Π1 formula ψ(x, y⃗) and a⃗ ∈ M0, if M1 |= ∃xψ(x, j(⃗a))
then there is b ∈M0 s.t. M0 |= ψ(b, a⃗).

By cofinalness, we find c ∈ M0 s.t. M1 |= ∃x ∈ j(c)ψ(x, j(⃗a)), by replace-
ment (this is where M1 |= ZFC− is used), ∃x ∈ j(c)ψ(x, j(⃗a)) is equivalent to
a Πn formula an hence M0 |= ∃x ∈ cψ(x, a⃗). We are done. □

I don’t really understand why in the text book, the language in (c) and (d)
is different.

7 Problem 10.7

We say a real x codes a structure (M,∈, A) iff for o(x) : n 7→ 2n + 1 and
e(x) : n 7→ 2n π(ω,Eo(x), Ae(x)) ∼= (M,∈, A) where Eo(x) denotes the standard
coding of o(x) as a well-founded relation and n ∈ Ae(x) ⇐⇒ e(x)(n) ̸= 0. π is
the transitive collapse.

Claim 3 (Claim 10.7.1). The following relation is ∆1
2:

(x, y) ∈ A ⇐⇒ x codes a premouse and its iteration up to ||y||.

In the sense that for all n, (x)n : m 7→ x(Γ(n,m)) codes a premouse and

n1Eyn2 ⇐⇒ (x)n2 codes an ultrapower of (x)n1

Proof. First we show that x codes a premouse is Π1
1. x codes a premouse iff

o(x) ∈ WF and (ω,Eo(x)) |= ZFC−+V = L+there is a largest cardinal and say
nκ is the largest cardinal in (ω,Eo(x) (ω,Eo(x), Ue(x)) |= Ue(x) is a non-trivial normal <
κ complete ultrafilter on κ.

(ω,Eo(x)) |= ZFC− + V = L + there is a largest cardinal is arithmeti-
cal since the relation (ω,Eo(x)) |= φ(n1 . . . nm) is arithmetical. To analyze
(ω,Eo(x), Ue(x)) |= Ue(x) is a non-trivial normal < κ complete ultrafilter on κ,
for instance (ω,Eo(x), Ue(x)) |= Ue(x) is < κ complete. iff

∀n(πx(n) ∈ πx(nκ) → ∀X ∈ [ω]ω(∀m ∈ X(m ∈ Ue(x)∧πx(m) ∈ πx(n)) → ∃l ∈ Ue(x)(
⋂
πx[X] = πx(l)))
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Where πx is the Mostowski collapse. This is a Π1
1 property, for the Mostowski

collapse part see for instance Jech Proof of Lemma 25.25.
Next consider the following relation:

(x, y) ∈ Ult ⇐⇒ y, x both code premice and y codes the ultrapower of x

First we notice the ultrapower equivalence relation for x is given by, for n1, n2
that are functions with domain ω in (ω,Eo(x)) collapsed,

n1 ≡ n2 ⇐⇒ ∃m(m ∈ Ue(x) ∧ ∀l(π(l) ∈ π(m) → π(n1)(π(l)) ∈ π(n2)(π(l))))
(*)

We have y codes the ultrapower of x iff there is ≡x⊆ ω2, f ∈ ωω s.t. ≡x is
an equivalent relation satisfying ∗, f respects ≡x and is bijective ω → {n ∈ ω |
πx(n) is a function with domain ω}/ ≡x,

n1Ee(y)n2 ⇐⇒ ∃m(m ∈ Ue(x) ∧ ∀l(π(l) ∈ π(m) → π(n1)(π(l)) ∈ π(n2)(π(l))))

and
n1 ∈ Ue(y) ⇐⇒ m(m ∈ Ue(x) ∧ ∀l(π(l) ∈ π(m) → l ∈ Ue(x)))

And hence Ult is a Σ1
1 relation.

Hence, let (x)n : m 7→ x(Γ(n,m)), (x, y) ∈ A ⇐⇒ ∀n1, n2(n2 is the Ey successor of n1 →
((x)n1

, (x)n2
) ∈ Ult), and thus is ∆1

2. Moreover, the shows that the section of
A along y is also ∆1

2. □
Thus x codes a z-mouse is a Π1

2(z) property.

8 Problem 10.8

Let x♯ = (Jα[x], U), then ωω ∩ x♯ = ωω ∩ L[x] by a condensation argument as
in Problem 10.10. Hence by Corollary 7.21 the conclusion follows.

9 Problem 10.9

Claim 4 (Claim 10.9.1). For Jα[x], Jβ [x], if j : Jα[x] → Jβ [x] is an elementary
embedding which has critical point γ < |α|, then x♯ exists.

Proof of claim: Let U be the ultrafilter defined on γ with j. Since γ < |α|,
Jα[x] and L[x] agrees on P(γ) and hence L[x] also thinks U is a γ complete
ultrafilter on γ. It suffice to show that Ult(L[x], U) is well-founded. Thus
Ult(L[x], U) = L[x] and the ultrapower map is an non trivial elementary em-
bedding from L[x] to itself.

Suppose for contradiction that . . . [f1] ∈ [f0], let Jθ[x] be such that fn ∈
Jθ[x]. Take:

π : Jδ[x] ∼= hJθ[x](γ ∪ {fn | n ∈ ω}) ≺ Jθ[x]

Then we assume π(gn) = fn and δ < α since |Jδ[x]| = γ < α. Thus gn ∈
Jδ[x] ⊆ Jα[x], since π is elementary and is constant on γ, we have that {ξ |
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gn(ξ) ∈ gm(ξ)} ∈ U iff {ξ | fn(ξ) ∈ fm(ξ)} ∈ U . This means that [g0], [g1] . . .
would be an ill-founded chain in Ult(Jα[x], U), but this model embeds into Jβ [x],
a contradiction. □

Claim 5 (Claim 10.9.2). Let κ be ω1-Erdos, then κ→ [ω1]
<ω
2ω .

See for instance Jech Lemma 17.29□
(i) Now for the ω1 Erdos cardinal κ, we consider the model Jκ[x]. Define

the map F : [ω]<ω → 2ω by the following, for n,m ∈ ω, λ1 < · · · < λn < κ:

F (λ1 . . . λn) = {n | Jκ[x] |= φn(λ1 . . . λn)}

Then by the Claim 10.9.2 we obtain there is X ⊆ κ of size ω1 s.t. X is a set of
indiscernibles for Jκ[x], i.e. for any λi1 < · · · < λin ∈ X and λj1 < · · · < λjn ∈
X and any φ,

Jκ[x] |= φ(λi1 . . . λin) ⇐⇒ Jκ[x] |= φ(λj1 . . . λjn)

We consider the model

π : Jα[x] ∼= hJκ[x](X) ≺ Jκ[x]

We write π(ξα) = λα for . Then in Jα[X], every a ∈ Jα[x] is of the form
hJα[x](n, ξα1

. . . ξαn
) for some n and ξαi

and {ξα | α < ω1} is indiscernibles for
Jα[x]. Then for arbitrary e : ω1 → ω1 that is order preserving, it induces an
elementary embedding Jα[x] → Jα[x] by the following map:

πe : hJα[x](n, ξα1 . . . ξαn) 7→ hJα[x](n, ξe(α1) . . . ξe(αn))

Moreover, the first ordinal moved will be less than |α| since it is countable, while
α ≥ ω1 as |hJκ[x](X)| ≥ ω1. By Claim 10.9.1 x♯ exists. □

10 Problem 10.10

(a) We first show that for all ordinal δ ∈ Jα[x], we have π
Jα[x]
U (δ) = π

L[x]
U (δ). It

suffice to show that δκ ∩ Jα[x] = δκ ∩ L[x].
⊆ is obvious. For the other side, if f ∈ δκ ∩ L[X], we take γ large enough

s.t. f ∈ Jγ [x] and:

π : (Jβ [x], x) ∼= (HullL[x](TC(f)), x) ≺Σ1 (L[x], x)

where |Jβ [x]| ≤ max{δ, κ} ≤ κ+
L[x]

= α. Hence β ≤ α and thus f ∈ Jα[x].
Note: Here the condensation always applies as x ⊆ ω, hence the structures

are always elementary w.r.t. the predicate.

Now given π
Jα[x]
U (δ) = π

L[x]
U (δ) for all ordinal δ ∈ Jα[x], we show that

π
Jα[x]
U = π

L[x]
U |Jα[x]. For arbitrary a ∈ Jα[x], we have δ < κ+

L[x]
s.t. L[x] |=

rank<L[x]
(a) = δ. By Σ1 elementariness of ultrapower embedding, Ult(L[x], U) |=
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rank<L[x]
(π

L[x]
U (a)) = π

L[x]
U (δ). Hence L[x] |= rank<L[x]

(π
L[x]
U (a)) = π

L[x]
U (δ) =

π
Jα[x]
U (δ). This shows that π

L[x]
U (a) = π

Jα[x]
U (a).

(b) As for f : κ → Jα[x] that is ∈ Jα[x], π
M
U (f)(κ) = π

L[x]
U (f)(κ) by (a).

This shows that Ult0(M) ⊆ Ult(L[x], U). Hence Ult0(M) is transitive.

Jα′ [x] = {πM
U (f)(κ) | f ∈ Jα[x]

κ ∩ Jα[x]} = {πL[x]
U (f)(κ) | f ∈ Jα[x]

κ ∩
L[x]} = π

L[x]
U (Jα[x]). For the last equation, the ⊆ side is easy. For the other

side, if a ∈ π
L[x]
U (Jα[x]), assume a = π

L[x]
U (f)(κ) where f ∈ L[x]κ ∩L[x], we can

alter f to g s.t. g ∈ Jα[x]
κ ∩ L[x] and a = π

L[x]
U (f)(κ) = π

L[x]
U (g)(κ).

(c) by induction.
(d) For α < π(ξ), we show that there is η < ξ s.t. α < π(η), which concludes

the proof. Let α = [f ]U ∈ Ult(L[x], U), we may assume f : κ → ξ. But as
cf(ξ) > cf(κ), supf = δ < ξ.Hence α ≤ π(δ) < π(δ + 1).

By induction we show that π0,α(ξ) = ξ and cf(ξ) > (2Card(κ)+), the succes-

sor case: since |κα+1| < 2Card(κα)+, we have by the above conclusion π0,α+1(ξ) =
π0,α(ξ) = ξ.

For the limit case since ξ is a limit and γ ≤ 2Card(κα)+, we have cf(ξ) >

(2Card(κ)+). π0,γ(ξ) = ξ since if π0,γ(α) ≤
⋃

β<γ mβ where mβ is taking β many

power for |α|, e.g. m1 = 2|α|, m1 = 22
|α|

... Which is still less than ξ since ξ is
strong limit. □

11 Problem 10.11

Let M0 = x♯ and I = {κα | α < ω1} be the set of countable silver indiscernibles.
We aim to show that for each X ∈ P(ω1) ∩ L[x], there is α s.t. either

{κβ | α < β} ⊆ X or {κβ | α < β} ⊆ ω1 \X

And the conclusion follows from 10.2 (b).
Take the ω1 itreration of x♯, we have that

X ∈ P(ω1) ∩ L[x] ⇒ X ∈ Mω1

since ω1 is the largest cardinal in Mω1
and thus we know that P(ω1) ∩ L[x] =

P(ω1) ∩Mω1
by the argument in 10.10 (a).

Hence, X = πα,ω1
(Y ) for some α < ω1 and Y ∈ P(κα)∩Mα. We show that

if X ∈ Uα then {κβ | α < β} ⊆ X and the other case is similar.
The proof mirrors the argument in Lemma 10.9. For arbitrary β > α, we

consider the function for all ξ ∈ ω1,

φ(ξ) =

{
ξ if ξ ≤ α

ξ + β − (α+ 1) if ξ > α

By the Shift lemma, we have

Y ∈ Uα ⇐⇒ κα+1 ∈ παα+1(Y ) ⇐⇒ π0α+1(κ) ∈ X ⇐⇒ π0β(κ) = πφ
ω1ω1

(π0α+1(κ)) ∈ πφ
ω1ω1

(X) = X

□
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12 Problem 10.12(Not yet done)

We say a real x codes a structure (M,∈, A) iff for o(x) : n 7→ 2n + 1 and
e(x) : n 7→ 2n π(ω,Eo(x), Ae(x)) ∼= (M,∈, A) where Eo(x) denotes the standard
coding of o(x) as a well-founded relation and n ∈ Ae(x) ⇐⇒ e(x)(n) ̸= 0. π is
the transitive collapse.

Claim 6 (Claim 10.12.1). The following relation is Σ1
2:

(x, y) ∈ A ⇐⇒ x codes a premouse and its iteration up to ||y||.

In the sense that for all n, (x)n : m 7→ x(Γ(n,m)) codes a premouse and

n1Eyn2 ⇐⇒ (x)n2
codes an ultrapower of (x)n1

Proof. First we show that x codes a premouse is Π1
1. x codes a premouse iff

o(x) ∈ WF and (ω,Eo(x)) |= ZFC−+V = L+there is a largest cardinal and say
nκ is the largest cardinal in (ω,Eo(x) (ω,Eo(x), Ue(x)) |= Ue(x) is a non-trivial normal <
κ complete ultrafilter on κ.

(ω,Eo(x)) |= ZFC− + V = L + there is a largest cardinal is arithmeti-
cal since the relation (ω,Eo(x)) |= φ(n1 . . . nm) is arithmetical. To analyze
(ω,Eo(x), Ue(x)) |= Ue(x) is a non-trivial normal < κ complete ultrafilter on κ,
for instance (ω,Eo(x), Ue(x)) |= Ue(x) is < κ complete. iff

∀n(πx(n) ∈ πx(nκ) → ∀X ∈ [ω]ω(∀m ∈ X(m ∈ Ue(x)∧πx(m) ∈ πx(n)) → ∃l ∈ Ue(x)(
⋂
πx[X] = πx(l)))

Where πx is the Mostowski collapse. This is a Π1
1 property, for the Mostowski

collapse part see for instance Jech Proof of Lemma 25.25.
Next consider the following relation:

(x, y) ∈ Ult ⇐⇒ y, x both code premice and y codes the ultrapower of x

First we notice the ultrapower equivalence relation for x is given by, for n1, n2
that are functions with domain ω in (ω,Eo(x)) collapsed,

n1 ≡ n2 ⇐⇒ ∃m(m ∈ Ue(x) ∧ ∀l(π(l) ∈ π(m) → π(n1)(π(l)) ∈ π(n2)(π(l))))
(*)

We have y codes the ultrapower of x iff there is ≡x⊆ ω2, f ∈ ωω s.t. ≡x is
an equivalent relation satisfying ∗, f respects ≡x and is bijective ω → {n ∈ ω |
πx(n) is a function with domain ω}/ ≡x,

n1Ee(y)n2 ⇐⇒ ∃m(m ∈ Ue(x) ∧ ∀l(π(l) ∈ π(m) → π(n1)(π(l)) ∈ π(n2)(π(l))))

and
n1 ∈ Ue(y) ⇐⇒ m(m ∈ Ue(x) ∧ ∀l(π(l) ∈ π(m) → l ∈ Ue(x)))

And hence Ult is a Σ1
1 relation.

Hence, let (x)n : m 7→ x(Γ(n,m)), (x, y) ∈ A ⇐⇒ ∀n1, n2(n2 is the Ey successor of n1 →
((x)n1

, (x)n2
) ∈ Ult), and thus is ∆1

2. Moreover, the shows that the section of
A along y is also ∆1

2. □
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Thus given the claim, we can already prove that for any β < ωL
1 there is

β′ > β, α s.t. the there is premouse (Jα,∈, U) ∈ L and the putative iteration of
length β′ +1 whose last model is ill-founded. For each β < ωL

1 , pick y ∈ ωω ∩L
s.t. ||y|| = β, since by Claim the section Ay = {x | (x, y) ∈ A} is ∆1

2. 0♯

witnesses its non-emptiness in V , by Shoenfield absoluteness Cor 7.21 Ay is
non-empty in L. say x ∈ Ay. But the minimal premouse coded in x cannot
be iterable since otherwise 0♯ ∈ L, which is nonsense, hence some step of the
iteration greater than β must fail.

Next we show that for any β < ωL
1 there is α s.t. there is premouse (Jα,∈

, U) ∈ L and the putative iteration of length β + 1 whose last model is ill-
founded. Pick the L least element Jα,∈, U s.t. there is x ∈ Ay s.t. (x)n∗ codes
Jα,∈, U where n∗ is the least element in the order coded by y. We build a tree
of attempts to find elementary embeddings from the β+1 th iterate of Jα,∈, U
into some large enough model.

13 Problem 10.13

We use the fact that Col(ω,< κ) =
∏fin

λ<κ Col(ω, λ). Let (κα, α < ω1) be the
countable Silver indiscernibles, as discussed in problem 10.11. Let (Mα, παβ , α ≤
β < ω1) be the iteration of x♯ up to ω1.

We prove by induction that α < ω1, there is Gα ∈ V s.t. that is Col(ω,<
κα)-generic over L[x]. And if α < β, then Gα, Gβ are consistent in the sense that
if p ∈ Col(ω,< κβ) has support contained κα, it holds true that p ∈ Gα ⇐⇒
p ∈ Gβ

The base case: κ0 is countable in V and all dense sets in Col(ω,< κ0) that
is in L[x] is already contained in M0, thus is countable. By the generic filter
theorem there is Col(ω,< κ0) generic G0 over L[x].

The successor case: Col(ω,< κα+1) = Col(ω,< κα)×
∏fin

κα≤λ<κα+1
Col(ω, λ),

by a similar argument to the base case, we have
∏fin

κα≤λ<κα+1
Col(ω, λ) generic

H over L[x] in V . Let Gα+1 = Gα × H and by Lemma 6.65 this satisfies the
requirement.

The limit case: Define q ∈ Gγ ⇐⇒ the support of q is contained in κα, q ∈
Gα. We have that Gγ is generic as suppose A is an antichain of Col(ω,< κγ), by
the fact that ωγ is inaccessible in L[x], by Lemma 6.44 L[x] thinks |A| < κγ , thus
for some α < γ, and thus A can be considered as an antichain in Col(ω,< κα).
By the consistency of Gγ w.r.t. Gα, it intersects A.

Next, we consider the filter G on Col(ω,< ω1) defined by

p ∈ G ⇐⇒ suppose the support of q is contained in κα, then p ∈ Gα

By the exact same argument as the limit case, we have that G is generic. □

14 Problem 10.14(Not yet done)

Claim 7 (Claim 10.14.1). A remarkable cardinal is inaccessible.

9



Proof. To show it is regular, pick arbitrary function f : δ → κ where
δ < κ. We pick α > κ s.t. f exists in Vα. In the generic extension, there
is σ : Vβ → Vα with critical point µ, σ(µ) = κ. Since Vβ |= µ is inaccessible,
Vα |= κ is inaccessible, contradicting the existence of f . The proof for strong
limit is similar. □

Claim 8 (Claim 10.14.2). For regular κ, κ-c.c. forcing preserves stationary in
[λ]<κ

Proof. For arbitrary Ċ s.t. p ⊩ Ċ is club, we pick τ s.t. p ⊩ τ ∈ Ċ. We
subsequently pick nice name τn, Xn ∈ V s.t. p ⊩ τn ∈ Ċ, p ⊩ X̌n ⊆ τn,
Xn ∈ [λ]<κ and ran(τn) ⊆ Xn ∈ [λ]<κ. The final requirement is doable by
κ-c.c. forcing. The sequence is definable in V , and thus we take

⋃
nXn, which

is in V and p forces it to be in Ċ. This argument shows that the limit point
of ĊG is a club set in V . This entails that the forcing preserves stationary in
[λ]<κ. □

(a) For arbitrary α, pick σ : Vβ → Vα in V [G] s.t. crit(σ) = µ and σ(µ) = κ.
The idea is to show that in, S = {X ∈ [Vβ ]

ω | X ≺ Vβ , X ∩ µ ∈ µ,∃β′X ∼= Vβ′}
is stationary and lift this statement via σ, then use the stationary preservation.

Now by the proof of Madgidor’s characterisation of supercompact cardinal
problem 4.29 and problem 4.30, we have that there is a normal V -ultrafilter U
on ([Vβ ]

<µ)V generated by

X ∈ U ⇐⇒ σ[Vβ ] ∈ σ(X)

Hence we obtain that the set S is in U as of course σ[Vβ ] ∈ σ(S) = {X ∈ [Vα]
ω |

X ≺ Vα, X ∩ κ ∈ κ,∃βX ∼= Vβ}. This means that S intersects all V club in
[Vβ ]

<µ. Lift this up and hence {X ∈ [Vα]
<κ | X ≺ Vα, X ∩ κ ∈ κ,∃β′X ∼= Vβ′}

intersects all V club in [Vα]
<κ. Since Col(ω,< κ) is κ- c.c., stationary set of

[Vα]
<κ is preserved and hence it is stationary in [Vα]

ω in V[G]. □
(b) If 0♯ exists, for Silver indiscernible
(c) If κ is a remarkable cardinal in V , then for arbitrary α there is in V [G]

an elementary embedding σ : Vβ → Vα with crit(σ) = µ and σ(µ) = κ. It suffice
to argue that some embedding σ′ : (Vβ)

L → (Vα)
L exists in L[G].

**Claim 10.14.3 If j : M → N is an elementary embedding in V and M
is countable, then for any transitive model H that knows enough ZFC so that
well-foundedness is absolute s.t. M,N ∈ H andM is countable in H, then there
is elementary embedding j′ :M → N in H**

Proof. Define the following tree of partial elementary map: Fix an enumer-
ation mi, i ∈ ω of elements in M . p ∈ T is a partial elementary map from M to
N with finite domain. p1 ≤ p2 if p1 is an end extension of p2. Then we have

T is ill-founded ⇐⇒ ∃j :M → N elementary

By the assumption that ill-foundedness is absolute betweenM and N , we obtain
the desired result.

Now σ|(Vβ)L is an elementary map from countable structure V L
β to V L

α . V L
β

is still countable in L[G] as β < κ. By the claim 10.14.3 we thus obtain that
such an elementary map exists in L[G]. □

10



15 Problem 10.16

Claim 9 (Claim 10.16.1). If V is closed under sharps then for all X ⊆ Ord
and X ∈ V , X♯ exists.

This is essentially Jech Exercise 18.2
Proof of Claim: We take κ > |X| and take H generic over Col(ω, κ), then X

is countable in V [G] and hence X♯ exists. But the statement that X♯ exists is
equivalent to the statement that L[X] has a proper class of Silver indiscernibles.
Take {κα | α > β} be the class of cardinals in V [G] greater than |P|, they are
also cardinals in V . Notice L |= φ(κα1 . . . καn) iff L |= φ(κα′

1
. . . κα′

n
), is absolute

for V [G] and V and hence {κα | α > β} is a proper class of Silver indiscernibles
in V . This shows that X♯ exists in V . □

Let G be generic over P. Let A be such that V [G] |= x ∈ A ⇐⇒ ∃yφ(x, y, z)
for some φ that is Σ1

2(z). We take X ∈ V s.t. P ∈ X♯ = (Jα[X],∈, U) and
P ∈ Jκ[X], where κ is the largest cardinal in Jα[x]. Say

p ⊩ φ(τ1, τ2, z)

We take π : N → X♯ elementary be s.t. N countable transitive, π(q) = p and
π(Q) = Q, π(σ1) = τ1 and π(σ2) = τ2. Hence

N |= q ⊩ φ(τ1, τ2, z)

By assumption that P ∈ Jκ[X], Q is contained in the part that is not moved by
iteration.

By Claim 10.1.1, we may iterate N up to ω1, call it Nω1
, then ω1 ⊆ Nω1

and
q,Q, σ1, σ2 is unchanged under the iteration. Notice that the subsets of Q in
Nω1 are already appearing in N , which is countable. Hence, there is a Q generic
g ∈ V over Nω1 , and we have

Nω1 [g] |= φ(σ1g, σ2g, z)

As σ1g, σ2g ∈ V by Shoenfield absoluteness,

V |= ∃x, yφ(x, y, z)

Concluding the proof. □

16 Problem 10.17

Right to Left: Assume for contradiction that · · · ∈ [a2, f2] ∈ [a1, f1].
By Lemma 10.64, we may have

hUlt0(V ;E)({[an, fn] | n ∈ ω}) ≺Σ0 Ult0(V ;E)

and Σ0 elementary map

φ : hUlt0(V ;E)({[an, fn] | n ∈ ω}) → V

11



This leads to the non well-foundedness of V , a contradiction.
Left to Right: Assume Ult(V,E) ∼= M is well founded. Let jE be the

extender embedding. Consider the tree

U := {s | ∃k ∈ ω(s :
⋃
i≤k

ai → κ ∧ s is order preserving ∧ ∀i ≤ k, s[ai] ∈ Xi)}

where the order is s1 ≺ s2 ⇐⇒ s2 ⊂ s1. The inverse of j|⋃
i∈ω ai

witnesses that

j(U) is not a well-founded tree as for each k,

(j|⋃
i≤k j(ai))

−1 :
⋃
i≤k

j(ai) → j(κ) is order preserving and ∀i ≤ k(j|⋃
i≤k j(ai))

−1(j(ai)) = ai ∈ Xi

By the absoluteness of well-foundedness, j(U) is not well-founded in M , and
thus U is not well-founded in V by elementarity. This gives the desired map. □

17 Problem 10.18

(1) For cf(α) < κ, the argument is exactly the same as Lemma 4.52 (c).
For cf(α) > κ, let βγ → α, γ → cf(α). Of course

⋃
γ→cf(α) πEβγ ≤ πEα.

For arbitrary ξ < πEα, ξ = [a, f ] for some a ∈ [ν]<ω, f : [µa]
|a| → α. By the

fact that E is a short extender, we have |µa| ≤ κ, then f has to be bounded by
some πEβγ , hence ξ < πEβγ .

(2) Pick a cofinal sequence βγ → λ, γ → cf(λ). By (1) we thus have
supγ→cf(λ)πEβγ = πEλ. We show that πEβγ < λ and this concludes the proof.

Since each ξ < πEβγ is of the form ξ = [a, f ] for some a ∈ [ν]<ω, f : [µa]
|a| → βγ ,

and as E is a short extender, we have |µa| ≤ κ. We have that |πEβγ | ≤ |ν×βκ
γ | <

λ. This concludes the proof. □

18 Problem 10.19

Ultrafilter Property: For α < κ, (Yi | i < α) ∈ V [G]∩E∗
a
α. Let p ∈ G. Let Ai be

a maximal antichain, definable in V , of elements p ≤ q s.t. ∃Xq,i, q ⊩ Xq,i ⊆ Ẏα.
Then since |P| < κ, |Ai| < κ and hence⋂

i<α

Yi ⊇
⋂

i<α,q∈Ai

Xi,q ∈ Ea

To Checking that this is an ultrafilter, upward closedness is easy. For Y ∈
[µa]

|a| ∩ V [G], consider the following sets, definable in V : Du := {p | p ⊩
u ∈ Ẏ }, Fu = {u | p ⊩ u ̸∈ Ẏ }. By the fact that κ is inaccessible in V ,
{Du | u ∈ [µa]

|a|} ⊆ P(|P|) and thus is of cardinality less than κ. Hence there
is X ∈ Ea s.t. Du = Du′ , Fu = Fu′ for all u, u′ ∈ X. Now Du ∪Fu is dense in P
and hence G intersects elements of it, but it can’t intersect element from both
Du and Fu. If G ∩Du is not empty, then Y ⊇ X and hence Y ∈ E∗

a , the other
side is similar.

12



Remark:If we naively take (Xi | i < α) subsets of (Yi | i < α), the sequence
might not be in V . We circumvent this by considering all possible subsets of Yi
in U .

We notice that (∗) for all ordinal µ, [µ]|a| ∈ Ea ⇐⇒ [µ]|a| ∈ E∗
a and hence

µa is the smallest µ s.t. [µ]|a| ∈ Ea ⇐⇒ [µ]|a| ∈ E∗
a .

Coherence: For Y ∈ E∗
a and b ⊇ a, we have that Y ⊇ X for some X ∈ Ea

and thus Xab ∈ Eb. Since X
ab ⊆ Y ab, Y ab ∈ E∗

b .
The other side follows from the fact that if Y ̸∈ E∗

a , then [µa]
|a| − Y ∈ E∗

a

but [µa]
|a| − Y

ab ∩ Y ab = ∅.

Uniformity follows from (∗).
Normality: Take f : [µa]

|a| → µa with f ∈ V [G],

p ⊩ ∃X,X ⊆ {u | ḟ(u) < max(u)}

Case 1: µa < κ. We have p ⊩
⋃

g:[µa]|a|→µa
{u | g(u) = ḟ(u)} = [µa]

|a| since

p ⊩ ∃g : [µa]
|a| → µa, g(u) = ḟ(u) for all u. Since there are at only |µa|µa

many such functions g : [µa]
|a| → µa, p ⊩ ∃g, {u | g(u) = ḟ(u)} ∈ Ea. Since

we have {u | g(u) < max(u)} ∈ Ea, we obtain by normality that there is β s.t.
{u | ga,a∪{β}(u) < max(u)} ∈ Ea∪{β}. The conclusion follows as

{u | ga,a∪{β}(u) < max(u)}∩{u | ga,a∪{β}(u) = ḟa,a∪{β}(u)} ⊆ {u | ḟa,a∪{β}(u) < max(u)}

Case 2: µa ≥ κ. Idea: < κ forcing should preserve stationary sets for [µa]
<ω,

µa > κ.

Claim 10 (Claim 10.19.1). For κ regular, forcing of size < κ preserves station-
ary sets on µ where µ ≥ κ.

Proof of Claim. It suffice to show that if p ⊩ Ċ is a club, then p ⊩ {α | α ∈ Ċ}
is a club. That p ⊩ {α | α ∈ Ċ} is closed is easy. For α0 s.t. p ⊩ α0 ∈ Ċ, we
have a name γ̇0 for an ordinal s.t. p ⊩ α0 < γ̇0 ∈ Ċ. Pick a maximal antichain
A under p where q ∈ A entails q ⊩ γ̇0 = γq. By the fact that the forcing is of
size < κ, we have α1 = sup{γq | q ∈ A} < κ and thus

p ⊩ ∃γ̇0 ∈ Ċ, α0 < γ̇0 < α1

Repeat this process to find αn, n ∈ ω s.t.

p ⊩ ∃γ̇n ∈ Ċ, αn < γ̇n < αn+1

Of course, p thinks γ̇n and αn shares a limit, and by closedness of Ċ, limn∈ω αn ∈
{α | α ∈ Ċ}. □

Remark: The argument actually works for κ c.c. posets, and is the argument
used to show that c.c.c. forcing is proper.

Proof of case 2: Fix an enumeration Γ : [µa]
|a| → µa satisfying Γ(u) >

max(u). And consider the induced map Γ : P([µa]
|a|) → P(µa)

13



Then, the normality of Ea is equivalent to saying that {Γ(X) | X ∈ Ea} con-
tains all closed sets in µa (normal as an ultrafilter on µa). Then the conclusion
follows by Claim 10.19.1. □

Next, we show that the two large cardinals are preserved under small forcing.

Claim 11 (Claim 10.19.2). For forcing P of size < κ, the extender elemen-
tary embedding πE : V → Ult(V,E) extends to elementary πE∗ : V [G] →
Ult(V [G], E∗), satisfying

πE∗ : τG 7→ πE(τ)G = [∅, cτG ]E∗

And consequently, Ult(V [G], E∗) = Ult(V,E)[G].

Proof. To show that πE∗ is elementary, it suffice to show that πE(τ)G =
([∅, cτ ]E)G = [∅, cτG ]E∗ . We prove by an induction on the well-foundedness of
elements in Ult(V [G], E∗) that

[a, ḟG]E∗ = ([a, ḟ ]E)G

Notice as the domain [µa]
|a| is absolute, here we can slightly abuse the notation,

by ḟ refers to both the function from [µa]
|a| to names and a name of the function

from [µa]
|a| to elements in V [G].

Say for [b, ġG]E∗ ∈ [a, ḟG]E∗ , by IH we have [b, ġG]E∗ = ([b, ġ]E)g.

[b, ġG]E∗ ∈ [a, ḟG]E∗ = ∃X ∈ Ea∪b, X ⊆ {u ∈ [µa∪b]
|a∪b| | ġb,a∪b

G (u) ∈ ḟa,a∪b
G (u)}

⇐⇒ ∃X ∈ Ea∪b, X ⊆ {u ∈ [µa∪b]
|a∪b| | ∃p ∈ G, p ⊩ ġb,a∪b(u) ∈ ḟa,a∪b(u)}

⇐⇒ ∃p ∈ G, p ⊩ {u ∈ [µa∪b]
|a∪b| | ġb,a∪b(u) ∈ ḟa,a∪b(u)} ∈ Ea∪b (∗)

⇐⇒ ([b, ġ]E)G ∈ ([a, ḟ ]E)G

Here the only non trivial step is (∗), where left to right is by the fact that
|G| < κ and Ea∪b is < κ complete.□

Proof of the preservation of large cardinals.
For κ a strong cardinal, we take arbitrary α ≥ κ+2, and show that there is

j : V [G] →M elementary with crit(j) = κ, (Vα)
V [G] ⊆M .

Let E be the κ, ν-extender obtained in Lemma 10.58 where α < ν. For
x ∈ (Vα)

V [G], as |P| < κ we may assume P ∈ Vκ, we have ẋ ∈ Vα thus in
Ult(V,U). By Claim 10.19.2 Ult(V [G], E∗) = Ult(V,E)[G] computes the name
correctly and thus x = ẋG ∈ Ult(V [G], E∗). Hence (Vα)

V [G] ⊆ Ult(V,E∗). This
concludes the proof that κ is strong in V [G].

For κ a supercompact cardinal, similarly, let E be given by Lemma 10.61
and we aim to show that Ult(V [G], E∗)λ ⊆ Ult(V [G], E∗).

For {[ai, ḟiG ]E∗ | i < λ} ⊆ Ult(V [G], E∗), we have by Claim 10.19.2 that
{([ai, ḟi]E)G | i < λ} ⊆ Ult(V,E)[G]. This shows that {[ai, ḟi]E | i < λ} ⊆
Ult(V,E). By λ closedness of Ult(V,E) and pass it back to Ult(V [G], E∗), we
are done. □
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19 Problem 10.20

This is similar to preservation of strongness. Given δ Woodin in V , it suffice
to show for A ⊆ (Vδ)

V [G] there is κ s.t. for any α < κ there is elementary π :
V [G] →M s.t. crit(π) = κ, (Vα)

V [G] ⊆M and π(A)∩ (Vα)
V [G] = A∩ (Vα)

V [G].
Fix A ⊆ (Vδ)

V [G], P being small, we may assume in the similar fashion as
in proof of preservation of strongness that Ȧ, the name of A, to be a subset
of Vδ. We apply Lemma 10.77 and pick κ satisfying the for all α < κ there
is certified E s.t. πE : V → M is elementary and crit(π) = κ, Vα ⊆ M and
πE(Ȧ) ∩ Vα = Ȧ ∩ Vα.

It suffice to show that for any α > |P| + 2, the corresponding E satisfies:
πE∗(A) ∩ (Vα)

V [G] = A ∩ (Vα)
V [G]. We have by claim 10.19.2,

τG ∈ (Vα)
V [G] ∩A ⇐⇒ ∃p ∈ G, p ⊩ τ ∈ Ȧ ∩ Vα

⇐⇒ ∃p ∈ G∃B a maximal antichain under p,B × {τ} ⊆ Ȧ ∩ Vα
⇐⇒ ∃p ∈ G∃B a maximal antichain under p,B × {τ} ⊆ πE(Ȧ) ∩ Vα
⇐⇒ ∃p ∈ G, p ⊩ τ ∈ πE(Ȧ) ∩ Vα
⇐⇒ τG ∈ (Vα)

V [G] ∩ (πE(Ȧ))G = (Vα)
V [G] ∩ πE∗(A)

This concludes the proof. □

20 Problem 10.21

Don’t know how to argue via extenders, don’t know how to show the derived ex-
tender is λ closed. We solve this probem by proving the equivalence of Problem
10.22 first, and using Problem 10.22,

Assume for contradiction that κ is not supercompact, then let λ ≥ κ be
the least cardinal s.t. there is no ultrafilter U on Pκ(λ) witnessing κ is not λ
supercompact. This is a first order property.

Pick α s.t. V λ
α ⊆ Vα, any limit α s.t. cf(α) > λ would satisfy the property.

Then by assumption there is µ < β < κ ≤ λ < α s.t. there is σ : Vβ → Vα
elementary, with crit(σ) = µ. Notice Vβ |= there is least δ s.t. there is no
ultrafilter U on Pκ(λ) witnessing µ is not δ supercompact. Say δ is a witness of
this statement, then by elementarity σ(δ) = λ.

But deriving an ultrafilter U on Pκ(λ) from σ satisfying the conditions in
4.30, by Problem 10.22 the ultrafilter U in Vβ witnesses the σ−1(ξ) = δ super-
compactness of µ in Vβ . This is a contradiction.□

The use of ultrafilter turns the second-order property supercompactness to
a first order property. cf. problem 10.23

21 Problem 10.22

For U a < κ complete ultrafilter on [λ]<κ, we show that the map πU : V →
Ult(V,U) witnesses that κ is λ supercompact. Here Ult(V,U) is the ordinary

15



ultrapower construction, adapted to U and [λ]<κ. We omit the proof of Los
theorem.

Step 1 [id]U = πU [λ].
⊇ is by the first property and Los theorem: For α ∈ λ, {a ∈ [λ]<κ | α ∈

a} ∈ U and thus πU (α) ∈ [id]U .
⊆ is by the second property, which is clearly the analogue of normality.

Suppose [f ]U ∈ [id]U , then we have {a | f(a) ∈ a} ∈ U , let Xα := {a | f(a) =
α}. Suppose for contradiction that Xα ̸∈ U for all α < λ, then by the second
property of the ultrafilter, there is X ∈ U s.t. if α ∈ a ∈ X, then a ̸∈ Xα, i.e.
f(a) ̸= α. This set must be disjoint from {a | f(a) ∈ a}. This is a contradiction.
Hence some Xα ∈ U , entailing [f ]U = πU (α) ∈ πU [λ].

Step 2 Mλ ⊆M .
Say {[fα] | α < λ} ⊆M . Let g : [λ]<κ → V be s.t. g(a) is a function a→ V ,

g(a)(α) = fα(a).
By Los theorem, [g]U is a function from πU [λ] → Ult(V,U) and for every

α ∈ λ, [g](πU (α)) = [fα]. Hence ran([g]) = {[fα] | α < λ} ∈M .

Step 3 crit(πU ) = κ, λ < πU (κ).
crit(πU ) ≥ κ holds by < κ-completeness and the standard argument. We

have ot([id]U ) < πU (κ) as {a ∈ [λ]<κ | ot(a) < κ} = [λ]<κ ∈ U . Moreover for
arbitrary γ < κ, γ ≤ ot([id]U ) since

{a ∈ [λ]<κ | γ ≤ ot(a)} ⊇
⋂
α<γ

{a | α ∈ a} ∈ U

By the first property and < κ completeness. This shows that κ ≤ ot([id]U ) <
πU (κ) and thus crit(πU ) = κ.

Finally, λ = ot(πU [λ]) = ot([id]U ) < πU (κ).
This concludes the proof. □

22 Problem 10.23

Claim 12 (Claim 10.23.1). Every subcompact cardinal is inaccessible.

For arbitrary A ⊆ Vδ, A ⊆ Hδ+ . We find σ : (Hλ+ , B) → (Hδ+ , A). For
crit(σ) = µ, σ satisfy for arbitrary β < λ, Vβ ⊆ Hδ+ and σ(B) ∩ Vβ = B ∩ Vβ .

Work as the proof of Claim 10.79 in Hλ+ and extract an (µ, λ) extender E
witnessing πE(B) ∩ Vβ = B ∩ Vβ , the extender is in Hλ+ .

Pass the statement to Hλ+ , A and hence for all α < δ there is σ(µ), there is
σ(E) a (σ(µ), δ) extender on σ(µ), witnessing A ∩ Vα = πσ(E)(A) ∩ Vα. □
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23 Problem 10.24

Let x :=
⋃
{s | ∃T ∈ G, s is the stem of T}. For arbitrary δ ∈ [κ, λ] s.t. cf(δ) ≥

κ, we show that {sup(a ∩ δ) | a ∈ x} is unbounded in δ. And the conclusion
cfV [G](δ) = ω follows.

To that end, it suffice to show that

{T | s is the stem of T, ∃a ∈ s, γ ≤ sup a, a ∩ [γ, δ) ̸= ∅} (*)

is dense. Such a satisfying the property above would have γ ≤ sup(a ∩ δ) < δ
by cf(δ) ≥ κ.

For arbitrary T in the forcing with stem s, we notice that {a | s ⌢ a ∈ T} ∈
U contains a set a∗ that contains γ, that’s because {a | γ ∈ a} ∈ U . Let T ′ be
the subtree of T with stem s ⌢ a∗. This tree witnesses (∗) property.

Claim 13 (Claim 10.24.1). For all T and formula φ(τ1 . . . τn), there is T ′ ≤ T
with the same stem that decides the formula.

Proof of Claim, For a tree T in the forcing with stem s, we use the notation
(s, T ) to make explicit its stem. For condition (s, T ), define as in proof of Claim
10.7 F : [X]<ω → 3 as follows:

F (s′) =


0 if there is no T ′ s.t. (s ∪ s′, T ′) decides φ

1 if there is T ′ s.t. (s ∪ s′, T ′) forces φ

2 if there is T ′ s.t. (s ∪ s′, T ′) forces ¬φ

By definability of forcing, F ∈ V and thus by Rowbottom’s theorem there is
Y ∈ U s.t. for each n ∈ ω, F is constant on [Y ]n.

Let (s, T ′) be the subtree of (s, T ) defined recursively satisfying if a ∈
succT (b), then

a ∈ T ′ ⇐⇒ a ∈ succT ′(b) ∩ Y
(s, T ′) is the subtree of (s, T ) slimed at every node by Y .

We show that (s, T ′) decides φ. If not, then there is (b1, T1), (b2, T2) ≤ (s, T ′)
s.t. (b1, T1) ⊩ φ while (b2, T2) ⊩ ¬φ. May assume |b1| = |b2| = |a|+ n. But by
design b1 \ a, b2 \ a ∈ [Y ]n while F (b1 \ a) ̸= F (b2 \ a). This is a contradiction.
□

Proof of Vκ = V
V [G]
κ : This is similar to Lemma 10.6. In the final step we

take q = (a,
⋂

ξ<λ Tξ),
⋂

ξ<λ Tξ is still a valid tree by < κ completeness of the
ultrafilter. □

24 Problem 10.25

Assume for contradiction that E0 >M E1 >M E2 . . . . Consider the following
iteration tree where <T := {0} × N+, M0 = V , Mn+1 = Ult(M0, En). As
En ∈Mn by definition of Mitchell order, this is a one-level, infinitely branching
iteration tree. This contradicts Theorem 10.74 as there is no infinite branch in
this tree. □
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