Solutions to problems in Ch.11

Yipu Li

June 2025

I currently wish to postpone Solidity and Box principle till later. As I haven't finished section 11.3, the solutions here are incomplete.

1 Problem 11.1

Step 1: By GCH, show that there is a class function $\varphi: Ord \to V$ satisfying $\varphi|_{\aleph_{\alpha+1}}$ is a surjection from $\aleph_{\alpha+1} \to \mathcal{P}(\aleph_{\alpha})$.

This is because under GCH, by an inductive argument, for $\alpha \geq \omega$, $|V_{\alpha}| = \aleph_{\alpha}$. Step 2: Code the function as a class of ordinals. Consider the following relation corresponding to the class function, $R(\alpha, \beta) \iff \beta \in \varphi(\alpha)$. Let Γ be the canonical pairing function $Ord^2 \to Ord$ and let $E = \Gamma[R]$. For limit γ , the canonical pairing satisfy $\Gamma[\gamma^2] = \gamma$.

We argue that L[E] = V. We verify that for $X \subseteq Ord$, $X \in V$ iff $X \in L[E]$, and by Problem 5.12 the conclusion follows. For a set of ordinals $X \in V$, let $X \in \mathcal{P}(\aleph_{\alpha})$, then there is $\gamma \in \aleph_{\alpha+1}$ s.t. $\varphi(\gamma) = X$. i.e. $\{\beta \mid R(\gamma, \beta)\} = X$. Now take δ s.t. $E \cap \delta \supseteq \Gamma[R|_{\aleph_{\alpha+1}}]$, since Γ is definable in L[E], and $E \cap \delta \in L[E]$, $R|_{\aleph_{\alpha+1}} \in L[E]$ and hence $X = \{\beta \mid R|_{\aleph_{\alpha+1}}(\alpha, \beta)\} \in L[E]$. This shows that L[E] = V.

Next we show that L[E] is acceptable. Let us pick $X \subseteq \mathcal{P}(\delta)$, say $|\delta| = \aleph_{\alpha}$. By assumption there is $\gamma < \aleph_{\alpha+1}$ s.t. $\varphi(\gamma) = X$, i.e. $\{\beta < \aleph_{\alpha+1} \mid R(\gamma, \beta)\} = X$. We notice that $\{\gamma\} \times X \subseteq \aleph_{\alpha+1}^2$, moreover, since $|\{\gamma\} \times X| < \aleph_{\alpha+1}$ and $\aleph_{\alpha+1}$ is regular, there is some $\beta < \aleph_{\alpha+1}$ s.t. $\beta \geq \sup \Gamma[\{\gamma\} \times X]$. Thus X can be recovered from in $E \cap \beta$, i.e. contained in $J_{\beta+1}[E]$. Hence, if $X \in J_{\gamma+\omega}[E] \setminus J_{\gamma}[E]$ for some $\gamma, \gamma \leq \beta$ and thus there is surjection from δ to γ . \square

2 Problem 11.2

Failure of acceptability: Say U is a $<\kappa$ complete ultrafilter on κ , we observe that $L_{\kappa}[U] = L_{\kappa}$, as for all $\delta < \kappa$, $x \in L_{\delta}$, $x \cap U = \emptyset$.

On the other hand, consider the set of countable Silver indiscernibles $I_{\omega_1}^{L[U]} \subseteq \omega_1^{L[U]}$, which exists in L[U] by Lemma 10.31 and Corollary 10.44. Since it can not be in L_{κ} , it exists in $L_{\gamma+\omega}[U] \setminus L_{\gamma}[U]$ for some $\gamma \geq \kappa$. But of course there is no surjection $\omega_1^{L[U]} \to \gamma$ in L[U].

Remark: Equivalently, we can work with a subset of ω that codes the minimal 0 mouse. But we cannot work with the set of terms of the Silver indiscernibles over $L_{\aleph_{\omega}^{L[U]}}$, see [this link](https://math.stackexchange.com/questions/1888063/why-is-0-sharp-not-definable-in-zfc) for clarification.

Weak acceptablility:

By the proof of problem 10.5, we know that $L[U] \models o(<_{L[U]} |_{\mathcal{P}(\rho)}) = |\rho|^+$. Assuming $(\mathcal{P}(\rho) \cap J_{\alpha+\omega}[U])J_{\alpha}[U] \neq \emptyset$, $J_{\alpha+\omega}[U] \models o(<_{L[U]} |_{\mathcal{P}(\rho)^{J_{\alpha}[U]}}) < |\rho|^+$, and this entails the conclusion.

3 Problem 11.3

The statement of the Lemma is wrong, according to errata, the additional hypothesis $\forall x \in U' \exists y \in U', x \in y$ is needed.

- (a) For a Σ_1 formula $\exists x \varphi(x, \vec{y})$, the U to U' direction is easy. If $U' \models \exists x \varphi(x, \pi(\vec{b}))$ for some $\vec{b} \in U'^{|\vec{b}|}$, say $U' \models \varphi(a, \pi(\vec{b}))$, take $a_0 \in U'$ s.t. $a \in a_0$ by cofinalness there is $a' \in U$ s.t. $a \in a_0 \subseteq \pi(a')$. Hence $U' \models \exists x \in \pi(a')\varphi(x, \pi(\vec{b}))$, by absoluteness of Δ_0 formulas, $U \models x \in a'\varphi(x, \vec{b})$ and the conclusion follows.
- (b) Say $\varphi(\vec{x}) = \forall y_1 \exists y_2 \psi(y_1, y_2, \vec{x})$. For $\vec{b} \in U'^{|\vec{b}|}$, if $U' \models \forall y_1 \exists y_2 \psi(y_1, y_2, \pi(\vec{b}))$, then for all $a \in U$, $U' \models \exists y_2 \psi(\pi(a), y_2, \pi(\vec{b}))$ and by Σ_1 elementariness, $U \models \exists y_2 \psi(a, y_2, \vec{b})$ and hence the conclusion holds.
- (c) Say $\varphi(\vec{x}) = \forall v_1 \exists v_2 \supseteq v_1 \psi(v_2, \vec{x})$, assume $U \models \forall v_1 \exists v_2 \supseteq v_1 \psi(v_2, \vec{b})$. For all $a \in U'$, let $a \subseteq \pi(a')$ for $a' \in U$ and thus there is $a'' \in U$ s.t. $U \models \psi(a'', \vec{b})$. Hence $U \models \psi(\pi(a''), \pi(\vec{b}))$ by upward closedness of Σ_1 formula, clearly $a \subseteq \pi(a'')$. This concludes the proof.

4 Problem 11.4

Claim 1 (Claim 11.4.1). Strengthening Claim 11.17. Under the assumption of the problem, if $\varphi(x_1)$ is a Σ_{n+1} -formula, for $\bar{x_i} = h_{\bar{M}}(n_i, (\bar{z_i}, \bar{p}))$ for $0 < i \le l$ and $n_i < \omega$ and $\bar{z_i} \in [\rho_1(M)]^{<\omega}$. Then let $x_i = h_M(n_i, (\bar{z_i}, p))$ where $\bar{z_i} = \pi(\bar{z_i})$, then

$$\bar{M} \models \varphi(\bar{x_1}, \dots, \bar{x_l}) \iff M \models \varphi(x_1, \dots, x_l)$$

Proof. I can't find the reference of function e on page 230. But the existence of such e is standard S_n^m argument in recursion theory. Hence we have the existence of function e s.t. for Σ_1 formula φ_n ,

$$\bar{M} \models \varphi_n(h_{\bar{M}}(n_1,(\vec{z_1},\bar{p})),\ldots,h_{\bar{M}}(n_l,(\vec{z_{l+n}},\bar{p}))) \iff \bar{M} \models \varphi_{e(n)}(\vec{z_1}\ldots\vec{z_{l+n}},\bar{p})$$

And similarly for M.

For simplicity of notation, we assume that n is odd, we have that

$$\bar{M} \models \varphi(\bar{x}_{1}, \dots, \bar{x}_{l}) \iff \bar{M} \models \exists \bar{z}_{l+1} \dots \forall \bar{z}_{l+n} \in [\rho_{1}(\bar{M})]^{<\omega}, \varphi_{n}(h_{\bar{M}}(n_{1}, (\vec{z}_{1}, \bar{p})), \dots, h_{\bar{M}}(n_{l}, (\vec{z}_{l+n}, \bar{p})))$$

$$\iff \exists \bar{z}_{l+1} \dots \forall \bar{z}_{l+n} \in [\rho_{1}(\bar{M})]^{<\omega}, \bar{M} \models \varphi_{e(n)}(\vec{z}_{1}, \dots, \vec{z}_{l+n}, \bar{p})$$

$$\iff \bar{M}^{\bar{p}} \models \exists \bar{z}_{l+1} \dots \forall \bar{z}_{l+n} A_{\bar{M}}^{\bar{p}}(e(n), (\vec{z}_{1}, \dots, \vec{z}_{l+n}))$$

Notice here in (*) we use the fact that $\bar{p} \in R_{\bar{M}}$. And hence by assumption the same holds for M.

Hence by Σ_n elementarity of $\pi: \bar{M}^{\bar{p}} \to M^p$ the claim is proved. \square

With the claim, we proceed as the proof of Lemma 11.16 and the conslusion follows. \Box

5 Problem 11.7

First we show that $cf^{V[G]}(\omega_2^V) = \omega$. Similar to the definition in Problem 10.24, we say s is a stem of T if s is the longest node in T s.t. for all $t \in T$, $t \supseteq s$ or $t \subseteq s$.

Since the set

$$D_n = \{T \in \mathbb{N} \mid T \text{ has stem } s \text{ longer than } n\}, n \in \omega$$

$$E_{\alpha} = \{ T \in \mathbb{N} \mid \text{the stem of } T, s \text{contains} \beta \geq \alpha \}, \alpha \in \omega_2$$

are dense, hence the $\bigcup \{s \mid s \text{ is the stem of } T, T \in G\}$ is a cofinal in ω_2 .

Next we show that Namba forcing preserves ω_1 . We every function $\tau: \omega \to \omega_1$ in V[G] is bounded. If $T \Vdash \tau: \omega \to \omega_1$, then we recursively choose $(t_s, T_s, \alpha_s \mid s \in \omega_2^{<\omega})$ s.t. 1. $T_{\emptyset} = \emptyset$, t_{\emptyset} 2. $t_s \in T_s$, s is part of the stem of T_s , $T_s \Vdash ran(\tau|_{lh(s)}) \subseteq \alpha_n$ for $\alpha_n < \omega_1$. 3. $\{t_{s \frown \xi} \mid \xi < \omega_2\} \subseteq T_s$ is a family of extensions of t_s of the same length of size \aleph_2 . For $\alpha < \omega_1$, define

$$T^{\alpha} = \bigcap \{ \bigcup \{ T_s \mid h(s) = n, \alpha_s < \alpha \} \mid n < \omega \}$$

For a tree T, define

$$T' = \{t \in T \mid \text{there are } \omega_2 \text{ many nodes below } t\}$$

Similar to the Cantor Bendixon argument, define $T_{\alpha+1} = T'_{\alpha}$ and $T_{\lambda} = \bigcap_{\alpha < \lambda} T_{\alpha}$, $T^* = \bigcap_{\alpha < \omega_3} T_{\alpha}$. Let $||t||_T = \alpha$ if $t \in T_{\alpha+1} - T_{\alpha}$, if $t \in T^*$, set $||t||_T = \infty$.

We argue that there is some $\alpha < \omega_1$ s.t. $||\emptyset||_{T^{\alpha}} = \infty$, otherwise consider the string $c_0 : \omega \mapsto 0$, pick $\alpha > \alpha|_{c_0|_n}$ for all n. Notice that $T_{c_0|_n} \subseteq T^{\alpha}$ for all n, and thus by construction of T_s , $||t_{c_0|_{n+1}}||_{T^{\alpha}} < ||t_{c_0|_n}||_{T^{\alpha}}$, a contradiction to the well-foundedness of ordinals.

Given there is some $\alpha < \omega_1$ s.t. $||\emptyset||_{T^{\alpha}} = \infty$, consider $(T^{\alpha})^*$, it is a perfect tree, $(T^{\alpha})^* \leq T$ and $(T^{\alpha})^* \Vdash ran(\tau) \subseteq \alpha$. This shows that $V[G] \models \tau_G$ is bounded in ω_1 .

Finally, we show that the constraint in Jensen's covering lemma cannot be left out. First observe that $|\omega_2^V|^{V[G]} = \omega_1^{V[G]} = \omega_1^V$ as $\omega_2^V < \aleph_\omega \le \omega_2^{V[G]}$, which is the first uncountable cardinal in V[G] with cofinality ω . This shows that ω_V is not a cardinal in V[G] and thus $|\omega_2^V|^{V[G]} = \omega_1^{V[G]} = \omega_1^V$.

Apply Namba forcing to L. Since Namba forcing preserves ω_1 , a set of

Apply Namba forcing to L. Since Namba forcing preserves ω_1 , a set of ordinals is countable in L iff it is countable in L[G]. Consider the set \aleph_2^L in L[G], take f as its cofinal sequence of type omega, since L thinks that there is no countable sequence cofinal in \aleph_2^L , any cover $Y \in L$, $Y \supseteq \{f(n) \mid n \in \omega\}$ would be uncontable in L[G].

For statement (3), consider in L[G] the club set $C = \{ f \in [\omega_2^L]^{\omega} \mid f \text{ is unbounded in } \omega_2^L \}$. This set does not intersect $[\omega_2^L]^{\omega} \cap L \square$

6 Problem 11.8

This is essentially Claim 10.16.1 in [[Ch. 10 of Schindler's text book]]. Alternatively, suppose there is forcing $\mathbb P$ that adds 0^{\sharp} , then $Con(ZFC) \to Con(ZFC+0^{\sharp} \text{ exists})$, which implies $Con(ZFC) \to Con(ZFC+1)$ inaccessible cardinals exists), this is absurd as ZFC and ZFC+1 inaccessible cardinal is not equiconsistent. \square

7 Problem 11.11

Following the hint of problem 19.12 in Jech, Let $\kappa = \omega_1$. Since $(\kappa^+)^L \leq \omega_2$, $cf((\kappa^+)^L) \leq (\omega_2)$. But as both ω_1 and ω_2 are singular, $cf(\omega_2) = cf((\kappa^+)^L) = \omega$. We pick X, Y two cofinal set of size ω for $\kappa = \omega_1$ and $(\kappa^+)^L$ respectively.

Consider the model L[X,Y], which is a model of ZFC and ω_1 is a singular cardinal in L[X,Y] while $(\kappa^+)^L$ is not a cardinal since models of ZFC thinks successor cardinals are regular. By corollary 11.60 0^{\sharp} exists in L[X,Y], thus in V.