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I currently wish to postpone Solidity and Box principle till later. As I haven’t
finished section 11.3, the solutions here are incomplete.

1 Problem 11.1

Step 1: By GCH, show that there is a class function ¢ : Ord — V satisfying
@|x.y, s a surjection from Vo y1 — P(Ry).

This is because under GCH, by an inductive argument, for a > w, |V, | = X,.

Step 2: Code the function as a class of ordinals. Consider the following
relation corresponding to the class function, R(«, ) <= S € ¢(a). Let T be
the canonical pairing function Ord? — Ord and let E = I'[R]. For limit v, the
canonical pairing satisfy I'[y?] = ~.

We argue that L[E] = V. We verify that for X C Ord, X € V iff X € L[E],
and by Problem 5.12 the conclusion follows. For a set of ordinals X € V, let
X € P(R,), then there is v € Ry41 s.t. o(y) = X. i.e. {B]R(v,8)} =X. Now
take § s.t. ENd 2 I'[R|x,,,], since I' is definable in L[E], and ENd € L[E],
R|x,., € L[E] and hence X = {3 | Rlx,,,(o, )} € L[E]. This shows that
LIE|=V.

Next we show that L[E] is acceptable. Let us pick X C P(¢), say |6] = N,.
By assumption there is v < Ro11 8.t (7)) = X, i.e. {8 <Roq1 | R(Y,08)} = X.
We notice that {y} x X C N2, moreover, since [{7} X X| < Ryi1 and Neiq
is regular, there is some f < R,4q1 s.t. 8 > supT'[{y} x X]. Thus X can be
recovered from in ENg, i.e. contained in Jzy1[E]. Hence, if X € J,1,[E]\J,[E]
for some 7, v < 8 and thus there is surjection from § to v. O

2 Problem 11.2

Failure of acceptability: Say U is a < k complete ultrafilter on k, we observe
that Ly[U] = L, as for all § < s, x € Ls, zNU = 0.

On the other hand, consider the set of countable Silver indiscernibles Ifl[U] C
wHY which exists in L[U] by Lemma 10.31 and Corollary 10.44. Since it can
not be in L, it exists in L4, [U] \ L,[U] for some v > k. But of course there
. L L[U] .
is no surjection w;"' — « in L[U].



Remark: Equivalently, we can work with a subset of w that codes the minimal
0 mouse. But we cannot work with the set of terms of the Silver indiscernibles
over Ly, see [this link] (https://math.stackexchange.com/questions /1888063 /why-
is-0-sharp-not-definable-in-zfc) for clarification.

Weak acceptablility:

By the proof of problem 10.5, we know that L[U] |= o(<ru] |p(») = |pT-
Assuming (P(p) N Jatw[U])Ja[U] # 0, Jasrw[U] E o< lp(p)raw) < lol™,
and this entails the conclusion.

3 Problem 11.3

The statement of the Lemma is wrong, according to errata, the additional hy-
pothesis Vx € U'3y € U’, z € y is needed.
(a) For a ¥y formula Jzp(z,¥), the U to U’ direction is easy. If U’ E

Jzp(z, (b)) for some b € U"EI, say U’ |= ¢(a, (b)), take ag € U’ s.t. a € ag by

cofinalness there is a’ € U s.t. a € ag C mw(a’). Hence U’ = Jz € w(a)p(z, (D)),
by absoluteness of A formulas, U |= x € a/¢(x,b) and the conclusion follows.

(b) Say (%) = Vy13y2(y1, y2, 7). For I;E UL iU | Yy 3yt (v, y2, m(B),
then for all @ € U, U’ &= Jys¢p(w(a),y2, 7(b)) and by X, elementariness, U |
Fyotb(a, ya, l_;) and hence the conclusion holds.

(c) Say ¢(Z) = Yvi1Tve D v19(va, &), assume U = YuyJvg D vlz/)(vg,g). For
all a € U’, let a C w(a) for o’ € U and thus there is a” € U s.t. U = (a”, b).

Hence U = ¢(w(a”),n(b)) by upward closedness of ¥; formula, clearly a C
m(a”). This concludes the proof.

4 Problem 11.4

Claim 1 (Claim 11.4.1). Strengthening Claim 11.17. Under the assumption of
the problem, if p(z1) is a Spi1-formula, for ; = hy(ng, (Z;,p)) for 0 < i <1
and n; < w and z; € [py(M)]<%. Then let x; = har(n;, (Z;, p)) where z; = 7(%;),
then

M ': (P(fl,...,fl) — M ): @(1'1,...,.%[)

Proof. I can’t find the reference of function e on page 230. But the existence
of such e is standard 5] argument in recursion theory. Hence we have the
existence of function e s.t. for ¥y formula ¢,

M 'zQon(hM(nlv(Zjlaﬁ))a-'~7h]\71(nl7(§l+naf7))) — M ':SDe(n)(Z:l"'gl+n>]5)

And similarly for M.



For simplicity of notation, we assume that n is odd, we have that

M ): <)0(fla"'7fl) — M ': 321+1"'vzl+71 € [pl(M)]<w750n(h]\7[(nlv(’Z_—iaﬁ))a'--ahM(nla(§l+naﬁ)))

— E|'§l+1 e 'VzlJrn € [pl(M)}<w> M ': Soe(n)(zh cey ZJrna]j)
)

<~ Mﬁ ': Elzl+1 . .v21+nAZ;Z(€(TL), (Z:i, ey ?l+n))

Notice here in (%) we use the fact that p € Ry;. And hence by assumption the
same holds for M.

Hence by ¥,, elementarity of 7 : M? — MP the claim is proved. O

With the claim, we proceed as the proof of Lemma 11.16 and the conslusion
follows. O

5 Problem 11.7

First we show that c¢fV[¢l(wY) = w. Similar to the definition in Problem 10.24,
we say s is a stem of T if s is the longest node in T' s.t. forallt € T, t O s or
t C s.

Since the set

D,, ={T € N|T has stem s longer than n},n € w

E, = {T € N | the stem of T, scontainsf} > a},a € wy

are dense, hence the | J{s | s is the stem of T, T € G} is a cofinal in ws.

Next we show that Namba forcing preserves wj. We every function 7 :
w — w; in V[G] is bounded. If T I+ 7 : w — wy, then we recursively choose
(ts, Ts,as | s € wy®) st. 1. Ty =0, ty 2. ts € Ty, s is part of the stem of T,
Ts Ik ran(tlip(s)) € an for a, < wi. 3. {to—¢ | £ < wo} C Ty is a family of
extensions of tg of the same length of size No. For o < wy, define

7 = (HZ: | h(s) =n 0 < a} | n < w}
For a tree T, define
T' = {t € T' | there are wy many nodes below ¢}

Similar to the Cantor Bendixon argument, define To 41 = T}, and T = (. Ta,
T* = Nocw, Ta- Let [[t]lr = aif t € Toy1 — Ta, if t € T, set |[t||7 = oo.

We argue that there is some @ < w; s.t. ||}]|7« = 0o, otherwise consider the
string co : w = 0, pick @ > a/,, for all n. Notice that Tt C T for all n,
and thus by construction of Ty, ||t [|7e < |[|tco), ||lTo, a contradiction to the
well-foundedness of ordinals.

Given there is some a < wy s.t. ||0]|7= = oo, consider (T%)*, it is a perfect
tree, (T%)* < T and (T%)* I+ ran(r) C a. This shows that V[G] E 7¢ is
bounded in w;.

CO‘n+1



Finally, we show that the constraint in Jensen’s covering lemma cannot be
left out. First observe that |w) |VIE) = w! 9 = WV as wY < R, < wy ) which
is the first uncountable cardinal in V[G] with cofinality w. This shows that wy
is not a cardinal in V[G] and thus |w) |V[¢] = wY[G] =wy.

Apply Namba forcing to L. Since Namba forcing preserves wi, a set of
ordinals is countable in L iff it is countable in L[G]. Consider the set ®% in
L[G], take f as its cofinal sequence of type omega, since L thinks that there
is no countable sequence cofinal in 8%, any cover Y € L, Y D {f(n) | n € w}
would be uncontable in L. Thus it would be uncountable in L[G].

For statement (3), consider in L[G] the clubset C' = {f € [wf]¥ | f is unbounded in wk}.
This set does not intersect [w4]* N L O

6 Problem 11.8

This is essentially Claim 10.16.1 in [[Ch. 10 of Schindler’s text book]].

Alternatively, suppose there is forcing P that adds 0, then Con(ZFC) —
Con(ZFC+0* exists ), which implies Con(ZFC) — Con(ZFC+ inaccessible cardinals exists ),
this is absurd as ZFC and ZFC+inaccessible cardinal is not equiconsistent. [

7 Problem 11.11

Following the hint of problem 19.12 in Jech, Let & = w;. Since (kT)F < wo,
cf((kT)T) < (wo). But as both w; and wy are singular, cf (wz) = cf ((k1)F) = w.
We pick X,Y two cofinal set of size w for K = w; and (k1)* respectively.

Consider the model L[X,Y], which is a model of ZFC and w; is a singular
cardinal in L[X,Y] while (k7) is not a cardinal since models of ZFC thinks
successor cardinals are regular. By corollary 11.60 0% exists in L[X, Y], thus in
V.



