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I currently wish to postpone Solidity and Box principle till later. As I haven’t
finished section 11.3, the solutions here are incomplete.

1 Problem 11.1

Step 1: By GCH, show that there is a class function φ : Ord → V satisfying
φ|ℵα+1

is a surjection from ℵα+1 → P(ℵα).
This is because under GCH, by an inductive argument, for α ≥ ω, |Vα| = ℵα.
Step 2: Code the function as a class of ordinals. Consider the following

relation corresponding to the class function, R(α, β) ⇐⇒ β ∈ φ(α). Let Γ be
the canonical pairing function Ord2 → Ord and let E = Γ[R]. For limit γ, the
canonical pairing satisfy Γ[γ2] = γ.

We argue that L[E] = V . We verify that for X ⊆ Ord, X ∈ V iff X ∈ L[E],
and by Problem 5.12 the conclusion follows. For a set of ordinals X ∈ V , let
X ∈ P(ℵα), then there is γ ∈ ℵα+1 s.t. φ(γ) = X. i.e. {β | R(γ, β)} = X. Now
take δ s.t. E ∩ δ ⊇ Γ[R|ℵα+1 ], since Γ is definable in L[E], and E ∩ δ ∈ L[E],
R|ℵα+1 ∈ L[E] and hence X = {β | R|ℵα+1(α, β)} ∈ L[E]. This shows that
L[E] = V .

Next we show that L[E] is acceptable. Let us pick X ⊆ P(δ), say |δ| = ℵα.
By assumption there is γ < ℵα+1 s.t. φ(γ) = X, i.e. {β < ℵα+1 | R(γ, β)} = X.
We notice that {γ} ×X ⊆ ℵ2

α+1, moreover, since |{γ} ×X| < ℵα+1 and ℵα+1

is regular, there is some β < ℵα+1 s.t. β ≥ supΓ[{γ} × X]. Thus X can be
recovered from in E∩β, i.e. contained in Jβ+1[E]. Hence, ifX ∈ Jγ+ω[E]\Jγ [E]
for some γ, γ ≤ β and thus there is surjection from δ to γ. □

2 Problem 11.2

Failure of acceptability: Say U is a < κ complete ultrafilter on κ, we observe
that Lκ[U ] = Lκ, as for all δ < κ, x ∈ Lδ, x ∩ U = ∅.

On the other hand, consider the set of countable Silver indiscernibles I
L[U ]
ω1 ⊆

ω
L[U ]
1 , which exists in L[U ] by Lemma 10.31 and Corollary 10.44. Since it can

not be in Lκ, it exists in Lγ+ω[U ] \ Lγ [U ] for some γ ≥ κ. But of course there

is no surjection ω
L[U ]
1 → γ in L[U ].
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Remark: Equivalently, we can work with a subset of ω that codes the minimal
0 mouse. But we cannot work with the set of terms of the Silver indiscernibles
over LℵL[U]

ω
, see [this link](https://math.stackexchange.com/questions/1888063/why-

is-0-sharp-not-definable-in-zfc) for clarification.
Weak acceptablility:
By the proof of problem 10.5, we know that L[U ] |= o(<L[U ] |P(ρ)) = |ρ|+.

Assuming (P(ρ) ∩ Jα+ω[U ])Jα[U ] ̸= ∅, Jα+ω[U ] |= o(<L[U ] |P(ρ)Jα[U]) < |ρ|+,
and this entails the conclusion.

3 Problem 11.3

The statement of the Lemma is wrong, according to errata, the additional hy-
pothesis ∀x ∈ U ′∃y ∈ U ′, x ∈ y is needed.

(a) For a Σ1 formula ∃xφ(x, y⃗), the U to U ′ direction is easy. If U ′ |=
∃xφ(x, π(⃗b)) for some b⃗ ∈ U ′|⃗b|, say U ′ |= φ(a, π(⃗b)), take a0 ∈ U ′ s.t. a ∈ a0 by

cofinalness there is a′ ∈ U s.t. a ∈ a0 ⊆ π(a′). Hence U ′ |= ∃x ∈ π(a′)φ(x, π(⃗b)),

by absoluteness of ∆0 formulas, U |= x ∈ a′φ(x, b⃗) and the conclusion follows.

(b) Say φ(x⃗) = ∀y1∃y2ψ(y1, y2, x⃗). For b⃗ ∈ U ′|⃗b|, if U ′ |= ∀y1∃y2ψ(y1, y2, π(⃗b)),
then for all a ∈ U , U ′ |= ∃y2ψ(π(a), y2, π(⃗b)) and by Σ1 elementariness, U |=
∃y2ψ(a, y2, b⃗) and hence the conclusion holds.

(c) Say φ(x⃗) = ∀v1∃v2 ⊇ v1ψ(v2, x⃗), assume U |= ∀v1∃v2 ⊇ v1ψ(v2, b⃗). For

all a ∈ U ′, let a ⊆ π(a′) for a′ ∈ U and thus there is a′′ ∈ U s.t. U |= ψ(a′′, b⃗).

Hence U |= ψ(π(a′′), π(⃗b)) by upward closedness of Σ1 formula, clearly a ⊆
π(a′′). This concludes the proof.

4 Problem 11.4

Claim 1 (Claim 11.4.1). Strengthening Claim 11.17. Under the assumption of
the problem, if φ(x1) is a Σn+1-formula, for x̄i = hM̄ (ni, (⃗̄zi, p̄)) for 0 < i ≤ l
and ni < ω and z̄i ∈ [ρ1(M)]<ω. Then let xi = hM (ni, (z⃗i, p)) where z⃗i = π(⃗̄zi),
then

M̄ |= φ(x̄1, . . . , x̄l) ⇐⇒ M |= φ(x1, . . . , xl)

Proof. I can’t find the reference of function e on page 230. But the existence
of such e is standard Sm

n argument in recursion theory. Hence we have the
existence of function e s.t. for Σ1 formula φn,

M̄ |= φn(hM̄ (n1, ( ⃗̄z1, p̄)), . . . , hM̄ (nl, (⃗̄zl+n, p̄))) ⇐⇒ M̄ |= φe(n)( ⃗̄z1 . . . ⃗̄zl+n, p̄)

And similarly for M .
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For simplicity of notation, we assume that n is odd, we have that

M̄ |= φ(x̄1, . . . , x̄l) ⇐⇒ M̄ |= ∃z̄l+1 . . . ∀z̄l+n ∈ [ρ1(M̄)]<ω, φn(hM̄ (n1, ( ⃗̄z1, p̄)), . . . , hM̄ (nl, (⃗̄zl+n, p̄)))

⇐⇒ ∃z̄l+1 . . . ∀z̄l+n ∈ [ρ1(M̄)]<ω, M̄ |= φe(n)( ⃗̄z1, . . . , ⃗̄zl+n, p̄)
(*)

⇐⇒ M̄ p̄ |= ∃z̄l+1 . . . ∀z̄l+nA
p̄

M̄
(e(n), ( ⃗̄z1, . . . , ⃗̄zl+n))

Notice here in (∗) we use the fact that p̄ ∈ RM̄ . And hence by assumption the
same holds for M .

Hence by Σn elementarity of π : M̄ p̄ →Mp the claim is proved. □
With the claim, we proceed as the proof of Lemma 11.16 and the conslusion

follows. □

5 Problem 11.7

First we show that cfV [G](ωV
2 ) = ω. Similar to the definition in Problem 10.24,

we say s is a stem of T if s is the longest node in T s.t. for all t ∈ T , t ⊇ s or
t ⊆ s.

Since the set

Dn = {T ∈ N | T has stem s longer than n}, n ∈ ω

Eα = {T ∈ N | the stem of T, scontainsβ ≥ α}, α ∈ ω2

are dense, hence the
⋃
{s | s is the stem of T, T ∈ G} is a cofinal in ω2.

Next we show that Namba forcing preserves ω1. We every function τ :
ω → ω1 in V [G] is bounded. If T ⊩ τ : ω → ω1, then we recursively choose
(ts, Ts, αs | s ∈ ω<ω

2 ) s.t. 1. T∅ = ∅, t∅ 2. ts ∈ Ts, s is part of the stem of Ts,
Ts ⊩ ran(τ |lh(s)) ⊆ αn for αn < ω1. 3. {ts⌢ξ | ξ < ω2} ⊆ Ts is a family of
extensions of ts of the same length of size ℵ2. For α < ω1, define

Tα =
⋂

{
⋃

{Ts | h(s) = n, αs < α} | n < ω}

For a tree T , define

T ′ = {t ∈ T | there are ω2 many nodes below t}

Similar to the Cantor Bendixon argument, define Tα+1 = T ′
α and Tλ =

⋂
α<λ Tα,

T ∗ =
⋂

α<ω3
Tα. Let ||t||T = α if t ∈ Tα+1 − Tα, if t ∈ T ∗, set ||t||T = ∞.

We argue that there is some α < ω1 s.t. ||∅||Tα = ∞, otherwise consider the
string c0 : ω 7→ 0, pick α > α|c0|n for all n. Notice that Tc0|n ⊆ Tα for all n,
and thus by construction of Ts, ||tc0|n+1

||Tα < ||tc0|n ||Tα , a contradiction to the
well-foundedness of ordinals.

Given there is some α < ω1 s.t. ||∅||Tα = ∞, consider (Tα)∗, it is a perfect
tree, (Tα)∗ ≤ T and (Tα)∗ ⊩ ran(τ) ⊆ α. This shows that V [G] |= τG is
bounded in ω1.
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Finally, we show that the constraint in Jensen’s covering lemma cannot be

left out. First observe that |ωV
2 |V [G] = ω

V [G]
1 = ωV

1 as ωV
2 < ℵω ≤ ω

V [G]
2 , which

is the first uncountable cardinal in V [G] with cofinality ω. This shows that ωV

is not a cardinal in V [G] and thus |ωV
2 |V [G] = ω

V [G]
1 = ωV

1 .
Apply Namba forcing to L. Since Namba forcing preserves ω1, a set of

ordinals is countable in L iff it is countable in L[G]. Consider the set ℵL
2 in

L[G], take f as its cofinal sequence of type omega, since L thinks that there
is no countable sequence cofinal in ℵL

2 , any cover Y ∈ L, Y ⊇ {f(n) | n ∈ ω}
would be uncontable in L. Thus it would be uncountable in L[G].

For statement (3), consider in L[G] the club set C = {f ∈ [ωL
2 ]

ω | f is unbounded in ωL
2 }.

This set does not intersect [ωL
2 ]

ω ∩ L □

6 Problem 11.8

This is essentially Claim 10.16.1 in [[Ch. 10 of Schindler’s text book]].
Alternatively, suppose there is forcing P that adds 0♯, then Con(ZFC) →

Con(ZFC+0♯ exists ), which implies Con(ZFC) → Con(ZFC+ inaccessible cardinals exists ),
this is absurd as ZFC and ZFC+inaccessible cardinal is not equiconsistent. □

7 Problem 11.11

Following the hint of problem 19.12 in Jech, Let κ = ω1. Since (κ+)L ≤ ω2,
cf((κ+)L) ≤ (ω2). But as both ω1 and ω2 are singular, cf(ω2) = cf((κ+)L) = ω.
We pick X,Y two cofinal set of size ω for κ = ω1 and (κ+)L respectively.

Consider the model L[X,Y ], which is a model of ZFC and ω1 is a singular
cardinal in L[X,Y ] while (κ+)L is not a cardinal since models of ZFC thinks
successor cardinals are regular. By corollary 11.60 0♯ exists in L[X,Y ], thus in
V .
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